System Labels: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
<p>Normally, execution of an [[Anonymous_Functions/Operators|Anonymous Function/Operator]] (AFO) or User-Defined Function/Operator (UDFO) starts execution at line one.  However, in certain contexts, execution may start at a different place depending upon the context and the presence of a <b>System Label</b>.  These special labels start with a quad symbol so as to distinguish them from normal labels.  The following table lists the system labels defined so far and the special context in which they are used.</p>
<p>Normally, execution of an [[Anonymous_Functions/Operators/Hyperators|Anonymous Function/Operator/Hyperator]] (AFOH) or User-Defined Function/Operator/Hyperator (UDFOH) starts execution at line one.  However, in certain contexts, execution may start at a different place depending upon the context and the presence of a <b>System Label</b>.  These special labels start with a quad symbol so as to distinguish them from normal labels.  The following table lists the system labels defined so far and the special context in which they are used.</p>


<table border="1" cellpadding="5" cellspacing="0" rules="none" summary="">
<table border="1" cellpadding="5" cellspacing="0" rules="none" summary="">
Line 13: Line 13:


     <tr>
     <tr>
    <td valign="top"><apll>⎕INV:</apll></td>
    <td></td>
    <td></td>
    <td>is called when an inverse function is needed as in <apll>foo⍣¯1 R</apll>.</td>
  </tr>
  <tr>
       <td valign="top"><apll>⎕MS:</apll></td>
       <td valign="top"><apll>⎕MS:</apll></td>
       <td></td>
       <td></td>
       <td></td>
       <td></td>
       <td>is called when an AFO/UDFO is invoked by the [[Multisets|Multiset Operator]].</td>
       <td>is called when an AFOH/UDFOH is invoked by the [[Multisets|Multiset Operator]] as in <apll>foo⍦R</apll>.</td>
     </tr>
     </tr>


Line 30: Line 37:
</table>
</table>
<br />
<br />
<p>For example, as a UDFO</p>
<p>For example, as a UDFOH</p>
 
<apll><pre>
    ∇ Z←{L} foo R
[1]  Z←L,R ⋄ →0
[2]  ⎕ID :Z←'Identity' ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0
[3]  ⎕INV:Z←'Inverse'  ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0
[4]  ⎕MS :Z←'Multiset' ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0
[5]  ⎕PRO:Z←'Prototype',(⎕NC 'L'),(⎕NC 'R') ⋄ →0
    ∇
</pre></apll>
 
or equivalently as an AFOH
 
<apll><pre>
      foo←{
<span style="color:blue;">➥</span>0:⍺←0 ⋄ ⍺,⍵
<span style="color:blue;">➥</span>⋄ ⎕ID :'Identity' ,(⎕NC '⍺'),⎕NC '⍵'
<span style="color:blue;">➥</span>⋄ ⎕INV:'Inverse'  ,(⎕NC '⍺'),⎕NC '⍵'
<span style="color:blue;">➥</span>⋄ ⎕MS :'Multiset' ,(⎕NC '⍺'),⎕NC '⍵'
<span style="color:blue;">➥</span>⋄ ⎕PRO:'Prototype',(⎕NC '⍺'),⎕NC '⍵'}
      )BOX ON
Was OFF
      foo/⍬
┌──────────────┐
│┌8───────────┐│
││Identity 0 2││
│└────────────┘2
└∊─────────────┘
      {⍺+÷⍵ ⋄ ⎕ID:∞}/⍬
      {⍺+÷⍵ ⋄ ⎕ID:∞}\7⍴1
1 2 1.5 1.666666667 1.6 1.625 1.615384615


<apll>&nbsp;&nbsp;&nbsp;&nbsp;∇ Z←{L} foo R<br />
      foo⍣¯1 1
[1]&nbsp;&nbsp;&nbsp;Z←L,R ⋄ →0<br />
┌9───────────┐
[2]&nbsp;&nbsp;&nbsp;⎕ID :Z←'Identity' ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0<br />
│ Inverse 0 2│
[3]&nbsp;&nbsp;&nbsp;⎕MS :Z←'Multiset' ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0<br />
└+───────────┘
[4]&nbsp;&nbsp;&nbsp;⎕PRO:Z←'Prototype',(⎕NC 'L'),(⎕NC 'R') ⋄ →0<br />
&nbsp;&nbsp;&nbsp;&nbsp;∇<br /></apll>


or equivalently as an AFO
      foo⍦ 1
Multiset 0 2
      2 foo⍦ 1
Multiset 2 2
      1 foo¨⍬
┌0──────────────┐
│┌11───────────┐│
││          0 0││
│└─────────────┘2
└∊──────────────┘
      foo/¨0⍴⊂⍬
NONCE ERROR
      foo/¨0⍴⊂⍬
        ∧
</pre></apll>


<apll>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;foo←{<br />
* <p>In the Identity element case, the AFOH/UDFOH is called with the Reduction function's right argument '''prototype''' as the right argument to the AFOH/UDFOH; the left argument is undefined.  For example, in <apll>foo/3 0⍴⊂⍳4</apll>, the (right) argument passed to the <apll>⎕ID:</apll> entry point is <apll>0 0 0 0</apll>.  The return value from the AFOH/UDFOH is used as the common item in the result.  Thus, the <apll>⎕ID</apll> entry point is called only once even though the result may have multiple copies of the return value.</p>
<span style="color:blue;">➥</span>0:⍺←0 ⋄ ⍺,⍵<br />
<span style="color:blue;">➥</span>⋄ ⎕ID :'Identity' ,(⎕NC ''),⎕NC ''<br />
<span style="color:blue;">➥</span>⋄ ⎕MS :'Multiset' ,(⎕NC '⍺'),⎕NC '⍵'<br />
<span style="color:blue;">➥</span>⋄ ⎕PRO:'Prototype',(⎕NC '⍺'),⎕NC '⍵'}<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⎕fmt foo/⍬<br />
┌──────────────┐<br />
│┌8───────────┐│<br />
││Identity 0 2││<br />
│└────────────┘2<br />
└∊─────────────┘<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{⍺+÷⍵ ⋄ ⎕ID:∞}/⍬<br />
<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;{⍺+÷⍵ ⋄ ⎕ID:∞}\7⍴1<br />
1 2 1.5 1.666666667 1.6 1.625 1.615384615<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;foo⍦ 1<br />
Multiset 0 2<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;2 foo⍦ 1<br />
Multiset 2 2<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⎕fmt 1 foo¨⍬<br />
┌0──────────────┐<br />
│┌11───────────┐│<br />
││&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp; 0 0││<br />
│└─────────────┘2<br />
└∊──────────────┘<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;foo/¨0⍴⊂⍬<br />
NONCE ERROR<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;foo/¨0⍴⊂⍬<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;∧</apll>


* <p>In the Identity element case, the AFO/UDFO is called with the Reduction function's right argument '''prototype''' as the right argument to the AFO/UDFO; the left argument is undefined.  For example, in <apll>foo/3 0⍴⊂⍳4</apll>, the (right) argument passed to the <apll>⎕ID:</apll> entry point is <apll>0 0 0 0</apll>.  The return value from the AFO/UDFO is used as the common item in the result.  Thus, the <apll>⎕ID</apll> entry point is called only once even though the result may have multiple copies of the return value.</p>
* <p>In the Inverse case, the AFOH/UDFOH is called with the same argument(s) as the Inverse-derived function.</p>


* <p>In the Multiset case, the AFO/UDFO is called with the same argument(s) as the Multiset derived function.</p>
* <p>In the Multiset case, the AFOH/UDFOH is called with the same argument(s) as the Multiset-derived function.</p>


* <p>In the Prototype case, the AFO/UDFO is called with arguments that are the '''prototypes''' of the respective arguments; in the monadic case, the left argument is undefined.</p>
* <p>In the Prototype case, the AFOH/UDFOH is called with arguments that are the '''prototypes''' of the respective arguments; in the monadic case, the left argument is undefined.</p>


* <p>For the moment, if two or more system labels would be called at the same time (such as the last example above), a <apll>NONCE ERROR</apll> is signaled.</p>
* <p>For the moment, if two or more system labels would be called at the same time (such as the last example above, which needs both a Prototype and Identity element), a <apll>NONCE ERROR</apll> is signaled.  Eventually, this case will be handled by placing all appropriate System Labels on the same line as in <apll>⎕ID:⎕PRO:</apll>.</p>


* This idea was taken from the paper by David A. Rabenhorst, "[http://portal.acm.org/citation.cfm?id=801228 APL function variants and system labels]", ACM SIGAPL APL Quote Quad, APL83, Volume 13,  Issue 3  (March 1983), pp. 281-284.
* This idea was taken from the paper by David A. Rabenhorst, "[http://portal.acm.org/citation.cfm?id=801228 APL function variants and system labels]", ACM SIGAPL APL Quote Quad, APL83, Volume 13,  Issue 3  (March 1983), pp. 281-284.

Latest revision as of 19:53, 18 September 2022

Normally, execution of an Anonymous Function/Operator/Hyperator (AFOH) or User-Defined Function/Operator/Hyperator (UDFOH) starts execution at line one. However, in certain contexts, execution may start at a different place depending upon the context and the presence of a System Label. These special labels start with a quad symbol so as to distinguish them from normal labels. The following table lists the system labels defined so far and the special context in which they are used.

⎕ID: is called when an identity element is needed as in foo/R where R is empty.
⎕INV: is called when an inverse function is needed as in foo⍣¯1 R.
⎕MS: is called when an AFOH/UDFOH is invoked by the Multiset Operator as in foo⍦R.
⎕PRO: is called when a prototype element is needed as in foo¨R where R is empty, or L foo¨R where one of both of L or R is empty and the other is conformable.


For example, as a UDFOH

    ∇ Z←{L} foo R
[1]   Z←L,R ⋄ →0
[2]   ⎕ID :Z←'Identity' ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0
[3]   ⎕INV:Z←'Inverse'  ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0
[4]   ⎕MS :Z←'Multiset' ,(⎕NC 'L'),(⎕NC 'R') ⋄ →0
[5]   ⎕PRO:Z←'Prototype',(⎕NC 'L'),(⎕NC 'R') ⋄ →0
    ∇

or equivalently as an AFOH

      foo←{
0:⍺←0 ⋄ ⍺,⍵
⋄ ⎕ID :'Identity' ,(⎕NC '⍺'),⎕NC '⍵'
⋄ ⎕INV:'Inverse'  ,(⎕NC '⍺'),⎕NC '⍵'
⋄ ⎕MS :'Multiset' ,(⎕NC '⍺'),⎕NC '⍵'
⋄ ⎕PRO:'Prototype',(⎕NC '⍺'),⎕NC '⍵'}
      )BOX ON
Was OFF
      foo/⍬
┌──────────────┐
│┌8───────────┐│
││Identity 0 2││
│└────────────┘2
└∊─────────────┘
      {⍺+÷⍵ ⋄ ⎕ID:∞}/⍬
∞
      {⍺+÷⍵ ⋄ ⎕ID:∞}\7⍴1
1 2 1.5 1.666666667 1.6 1.625 1.615384615

      foo⍣¯1 1
┌9───────────┐
│ Inverse 0 2│
└+───────────┘

      foo⍦ 1
Multiset 0 2
      2 foo⍦ 1
Multiset 2 2
      1 foo¨⍬
┌0──────────────┐
│┌11───────────┐│
││          0 0││
│└─────────────┘2
└∊──────────────┘
      foo/¨0⍴⊂⍬
NONCE ERROR
      foo/¨0⍴⊂⍬
         ∧
  • In the Identity element case, the AFOH/UDFOH is called with the Reduction function's right argument prototype as the right argument to the AFOH/UDFOH; the left argument is undefined. For example, in foo/3 0⍴⊂⍳4, the (right) argument passed to the ⎕ID: entry point is 0 0 0 0. The return value from the AFOH/UDFOH is used as the common item in the result. Thus, the ⎕ID entry point is called only once even though the result may have multiple copies of the return value.

  • In the Inverse case, the AFOH/UDFOH is called with the same argument(s) as the Inverse-derived function.

  • In the Multiset case, the AFOH/UDFOH is called with the same argument(s) as the Multiset-derived function.

  • In the Prototype case, the AFOH/UDFOH is called with arguments that are the prototypes of the respective arguments; in the monadic case, the left argument is undefined.

  • For the moment, if two or more system labels would be called at the same time (such as the last example above, which needs both a Prototype and Identity element), a NONCE ERROR is signaled. Eventually, this case will be handled by placing all appropriate System Labels on the same line as in ⎕ID:⎕PRO:.