Commute-Duplicate: Difference between revisions

From NARS2000
Jump to navigationJump to search
(Created page with "<table border="1" cellpadding="5" cellspacing="0" rules="none" summary=""> <tr> <td> <table border="0" cellpadding="5" cellspacing="0" summary=""> <tr> <td val...")
 
No edit summary
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <tr>
     <tr>
       <td valign="top">Commute: <apll>Z←f⍨ R</apll></td>
       <td valign="top">Duplicate: <apll>Z←f⍨ R</apll></td>
       <td></td>
       <td></td>
       <td>&nbsp;&nbsp;&nbsp;&nbsp;</td>
       <td>&nbsp;&nbsp;&nbsp;&nbsp;</td>
Line 17: Line 17:
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <tr>
     <tr>
       <td valign="top">Duplicate:  <apll>Z←L f⍨ R</apll></td>
       <td valign="top">Commute:  <apll>Z←L f⍨ R</apll></td>
       <td></td>
       <td></td>
       <td></td>
       <td></td>
Line 37: Line 37:
<p>For example:</p>
<p>For example:</p>


<apll>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;∘.=⍨⍳4 ⍝ Identity matrix<br />
<apll><pre>
1 0 0 0<br />
      ×⍨⍳5 ⍝ squares
0 1 0 0<br />
1 4 9 16 25
0 0 1 0<br />
      ∘.=⍨⍳4 ⍝ Identity matrix
0 0 0 1<br />
1 0 0 0
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;√+/2*⍨6 2⍴3 4, 5 12, 8 15, 7 24, 20 21, 12 35 ⍝ Pythagorean hypotenuses<br />
0 1 0 0
5 13 17 25 29 37<br />
0 0 1 0
0 0 0 1
</pre></apll>


</apll>
<apll><pre>
      2*⍨⍳5 ⍝ squares
1 4 9 16 25
      √+/2*⍨6 2⍴3 4, 5 12, 8 15, 7 24, 20 21, 12 35 ⍝ Pythagorean hypotenuses
5 13 17 25 29 37
</pre></apll>

Latest revision as of 18:41, 15 April 2018

Duplicate: Z←f⍨ R      returns R f R.
Commute: Z←L f⍨ R returns R f L.
L and R are arrays.
f is a function.

For example:

      ×⍨⍳5 ⍝ squares
1 4 9 16 25
      ∘.=⍨⍳4 ⍝ Identity matrix
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
      2*⍨⍳5 ⍝ squares
1 4 9 16 25
      √+/2*⍨6 2⍴3 4, 5 12, 8 15, 7 24, 20 21, 12 35 ⍝ Pythagorean hypotenuses
5 13 17 25 29 37