Power: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
Line 57: Line 57:


<tr>
<tr>
   <td><apll>  L⊥⍣¯1 R</apll></td>
   <td valign="top"><apll>  L⊥⍣¯1   R</apll></td>
   <td><apll><apll>(N⍴L)⊤R</apll> for <apll>N</apll> sufficiently large to display all digits of <apll>R</apll></td>
   <td><apll><apll>(N⍴L)⊤R</apll> for <apll>N</apll> sufficiently large to display all digits of <apll>R</apll><br />
<div style="display: inline;"><apll>        10⊥⍣¯1  1234567890<br />1 2 3 4 5 6 7 8 9 0<br />      10⊥10⊥⍣¯1  1234567890<br />1234567890</apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll>    ⊥⍣¯1 R</apll></td>
   <td valign="top"><apll>    ⊥⍣¯1   R</apll></td>
   <td><apll>2⊥⍣¯1 R</apll></td>
   <td><apll>2⊥⍣¯1   R</apll><br />
<div style="display: inline;"><apll>        ⊥⍣¯1  19<br />1 0 0 1 1<br />      2⊥⊥⍣¯1  19<br />19</apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll>  L⊤⍣¯1 R</apll></td>
   <td valign="top"><apll>  L⊤⍣¯1   R</apll></td>
   <td><apll>L⊥R</apll></td>
   <td><apll>L⊥R</apll><br />
<div style="display: inline;"><apll>              10 10 10⊤⍣¯1  2 3 4<br />234<br />      10 10 10⊤10 10 10⊤⍣¯1  2 3 4<br />2 3 4</apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll>  ×/⍣¯1 R</apll></td>
   <td valign="top"><apll>  ×/⍣¯1   R</apll></td>
   <td><apll>πR</apll>, that is, factor <apll>R</apll></td>
   <td><apll>πR</apll>, that is, factor <apll>R</apll> into primes<br />
<div style="display: inline;"><apll>        ×/⍣¯1  130<br />2 5 13<br />      ×/×/⍣¯1  130<br />130</apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll>    π⍣¯1 R</apll></td>
   <td valign="top"><apll>    π⍣¯1   R</apll></td>
   <td><apll>×/R</apll>, that is, multiply together the factors</td>
   <td><apll>×/R</apll>, that is, multiply together the factors<br />
<div style="display: inline;"><apll>      π⍣¯1  2 5 13<br />130<br />      ππ⍣¯1  2 5 13<br />2 5 13</apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll>  +\⍣¯1 R</apll></td>
   <td valign="top"><apll>  +\⍣¯1   R</apll></td>
   <td><apll>¯2-\R</apll></td>
   <td><apll>¯2-\R</apll><br />
<div style="display: inline;"><apll>        +\⍣¯1  ⍳4<br />1 1 1 1<br />      +\+\⍣¯1  ⍳4<br />1 2 3 4 </apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll> ¯2-\⍣¯1 R</apll></td>
   <td valign="top"><apll> ¯2-\⍣¯1   R</apll></td>
   <td><apll> +\R</apll></td>
   <td><apll>+\R</apll><br />
<div style="display: inline;"><apll>          ¯2-\⍣¯1  4⍴1<br />1 2 3 4<br />      ¯2-\¯2-\⍣¯1  4⍴1<br />1 1 1 1 </apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll> +∘÷/⍣¯1 R</apll></td>
   <td valign="top"><apll>   -\⍣¯1   R</apll></td>
   <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>⎕PP</apll> terms</td>
   <td><apll>(2-\R)×(⍴R)⍴¯1 1</apll><br />
<div style="display: inline;"><apll>      a←?5⍴10<br />      a<br />10 8 3 2 6<br />        -\⍣¯1  a<br />10 2 ¯5 1 4<br />     -\-\⍣¯1  a<br />10 8 3 2 6</apll></div></td>
</tr>
</tr>


<tr>
<tr>
   <td><apll>L+∘÷/⍣¯1 R</apll></td>
   <td valign="top"><apll>   ÷\⍣¯1   R</apll></td>
   <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>L</apll> terms</td>
   <td><apll>(2÷\R)*(⍴R)⍴¯1 1</apll><br />
<div style="display: inline;"><apll>      a←?5⍴10<br />      a<br />10 8 3 2 6<br />        ÷\⍣¯1  a<br />10 1.25 0.375 1.5 3<br />     ÷\÷\⍣¯1  a<br />10 8 3 2 6</apll></div></td>
</tr>
</tr>


</table>


<p>For example,</p>
<tr>
  <td valign="top"><apll> +∘÷/⍣¯1  R</apll></td>
  <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>⎕PP</apll> terms<br />
<div style="display: inline;"><apll>          +∘÷/⍣¯1  449<_r/>303<br />1 2 13 3 1 2<br />      +∘÷/+∘÷/⍣¯1  449<_r/>303<br />449<_r/>303</apll></div></td>
</tr>


<apll><pre>
<tr>
      10⊥⍣¯1 1234567890
  <td valign="top"><apll>L+∘÷/⍣¯1  R</apll></td>
1 2 3 4 5 6 7 8 9 0
  <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>L</apll> terms<br />
      ⊥⍣¯1 19
<div style="display: inline;"><apll>      25 +∘÷/⍣¯1  *1<_x/><br />2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1 14 1 1 16 1<br />     15 +∘÷/⍣¯1   ○1<_x/><br />3 7 15 1 292 1 1 1 2 1 3 1 14 2 1<br />        +∘÷\3 7 15 1<_x/>   ⍝ Convergents to Pi<br />3 22<_r/>7 333<_r/>106 355<_r/>113</apll></div></td>
1 0 0 1 1
</tr>
      10 10 10⊤⍣¯1 2 3 4
 
234
</table>
      ×/⍣¯1 130
2 5 13
      π⍣¯1 2 5 13
130
      +\⍣¯1 ⍳4
1 1 1 1  
      ¯2-\⍣¯1 4⍴1
1 2 3 4
      +∘÷/⍣¯1 449<_r/>303
1 2 13 3 1 2
      +∘÷/+∘÷/⍣¯1 449<_r/>303
449<_r/>303
      15 +∘÷/⍣¯1 ○1<_x/>
3 7 15 1 292 1 1 1 2 1 3 1 14 2 1
      +∘÷\3 7 15 1<_x/>     ⍝ Convergents to Pi
3 22<_r/>7 333<_r/>106 355<_r/>113  
      25 +∘÷/⍣¯1 *1<_x/>
2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1 14 1 1 16 1
</pre></apll>

Revision as of 17:20, 19 December 2019

Z←{L} fg R successively applies the function f (or, if there is a Left argument, the function L∘f) to R until the expression Zn g Zn-1 returns a singleton 1. Zn and Zn-1 represent two consecutive applications of f (or L∘f) to R where Z0←R and Znf Zn-1 (or Zn←L∘f Zn-1).
Z←{L} fb R for non-negative integer scalar b, successively applies the function f (or, if there is a Left argument, the function L∘f) to R, b number of times;
for a negative integer scalar b, successively applies the inverse of the function f (or, if there is a Left argument, the inverse to the function L∘f), |b number of times
L and R are arbitrary arrays.
In the first case, Zn g Zn-1 must return a Boolean-valued singleton; otherwise a DOMAIN ERROR is signaled.
In the second case, b must be an integer scalar, otherwise a DOMAIN ERROR is signaled.


For example,

      sqrt←{{0.5×⍵+⍺÷⍵}⍣=⍨⍵} ⍝ Calculate square root using Newton's method
      sqrt 2
1.414213562373095
      fib←{⍵,+/¯2↑⍵} ⍝ Calculate a Fibonacci sequence
      fib⍣15 ⊢ 1 1
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 
      pow←{⍵=0:,1 ⋄ ⍺+⍡×⍣(⍵-1) ⍺} ⍝ Raise a polynomial to a non-negative integer power
      1 ¯1 pow 5
1 ¯5 10 ¯10 5 ¯1
      phi←1+∘÷⍣=1 ⍝ Calculate the Golden Ratio
      phi
1.618033988749894

Inverses

When the right operand to the Power Operator is a negative integer scalar, the inverse of the function left operand is applied to the right argument. At the moment, only a few inverse functions are available as follows:

Function Meaning of Inverse
L⊥⍣¯1 R (N⍴L)⊤R for N sufficiently large to display all digits of R
10⊥⍣¯1 1234567890
1 2 3 4 5 6 7 8 9 0
10⊥10⊥⍣¯1 1234567890
1234567890
⊥⍣¯1 R 2⊥⍣¯1 R
⊥⍣¯1 19
1 0 0 1 1
2⊥⊥⍣¯1 19
19
L⊤⍣¯1 R L⊥R
10 10 10⊤⍣¯1 2 3 4
234
10 10 10⊤10 10 10⊤⍣¯1 2 3 4
2 3 4
×/⍣¯1 R πR, that is, factor R into primes
×/⍣¯1 130
2 5 13
×/×/⍣¯1 130
130
π⍣¯1 R ×/R, that is, multiply together the factors
π⍣¯1 2 5 13
130
ππ⍣¯1 2 5 13
2 5 13
+\⍣¯1 R ¯2-\R
+\⍣¯1 ⍳4
1 1 1 1
+\+\⍣¯1 ⍳4
1 2 3 4
¯2-\⍣¯1 R +\R
¯2-\⍣¯1 4⍴1
1 2 3 4
¯2-\¯2-\⍣¯1 4⍴1
1 1 1 1
-\⍣¯1 R (2-\R)×(⍴R)⍴¯1 1
a←?5⍴10
a
10 8 3 2 6
-\⍣¯1 a
10 2 ¯5 1 4
-\-\⍣¯1 a
10 8 3 2 6
÷\⍣¯1 R (2÷\R)*(⍴R)⍴¯1 1
a←?5⍴10
a
10 8 3 2 6
÷\⍣¯1 a
10 1.25 0.375 1.5 3
÷\÷\⍣¯1 a
10 8 3 2 6
+∘÷/⍣¯1 R Display the Continued Fraction expansion of R to at most ⎕PP terms
+∘÷/⍣¯1 449r303
1 2 13 3 1 2
+∘÷/+∘÷/⍣¯1 449r303
449r303
L+∘÷/⍣¯1 R Display the Continued Fraction expansion of R to at most L terms
25 +∘÷/⍣¯1 *1x
2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1 14 1 1 16 1
15 +∘÷/⍣¯1 ○1x
3 7 15 1 292 1 1 1 2 1 3 1 14 2 1
+∘÷\3 7 15 1x ⍝ Convergents to Pi
3 22r7 333r106 355r113