CombinatorialCase112: Difference between revisions

From NARS2000
Jump to navigationJump to search
(Created page with "This case produces '''Partitions of the set <apll>{⍳L}</apll> into <apll>R</apll> ordered parts'''. Essentially, this case is the same as CombinatorialCase102|<apll>102</...")
 
mNo edit summary
 
Line 1: Line 1:
This case produces '''Partitions of the set <apll>{⍳L}</apll> into <apll>R</apll> ordered parts'''.  Essentially, this case is the same as [[CombinatorialCase102|<apll>102</apll>]], except that the order of the elements is important so that there are more results by a factor of <apll>!R</apll>.  For example, the 3-subset result of <apll>1 2|3|4</apll> for [[CombinatorialCase102|<apll>102</apll>]] is expanded to <apll>!4</apll> (<apll>↔ 24</apll>) 3-subsets by permuting the values <apll>1 2 3 4</apll> in <apll>24</apll> ways.
This case produces '''Partitions of the set <apll>{⍳M}</apll> into <apll>N</apll> ordered parts'''.  Essentially, this case is the same as [[CombinatorialCase102|<apll>102</apll>]], except that the order of the elements is important so that there are more results by a factor of <apll>!N</apll>.  For example, the 3-subset result of <apll>1 2|3|4</apll> for [[CombinatorialCase102|<apll>102</apll>]] is expanded to <apll>!4</apll> (<apll>↔ 24</apll>) 3-subsets by permuting the values <apll>1 2 3 4</apll> in <apll>24</apll> ways.


* <apll>L</apll> labeled balls (1), <apll>R</apll> labeled boxes (1), at least one ball per box (2)
* <apll>M</apll> labeled balls (1), <apll>N</apll> labeled boxes (1), at least one ball per box (2)
* Sensitive to <apll>⎕IO</apll>
* Sensitive to <apll>⎕IO</apll>
* Counted result is an integer scalar
* Counted result is an integer scalar
* Generated result is a nested vector of nested integer vectors.
* Generated result is a nested vector of nested integer vectors.


The count for this function is <apll>(!R)×L SN2 R</apll> where <apll>L SN2 R</apll> calculates the [https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind Stirling numbers of the 2<sup>nd</sup> kind]..
The count for this function is <apll>(!N)×M SN2 N</apll> where <apll>M SN2 N</apll> calculates the [https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind Stirling numbers of the 2<sup>nd</sup> kind]..


For example:
For example:
Line 147: Line 147:
   1  2 3 4
   1  2 3 4
   2 3 4  1
   2 3 4  1
       ⍝ Partitions of the set {⍳L} into
       ⍝ Partitions of the set {⍳M} into
       ⍝  R ordered parts
       ⍝  N ordered parts
       ⍝ Labeled balls & boxes, any # Balls per Box
       ⍝ Labeled balls & boxes, any # Balls per Box
       ⍪112 1‼3 3
       ⍪112 1‼3 3
Line 171: Line 171:


<pre>
<pre>
a←⊃102 1‼L R
a←⊃102 1‼M N
b← 110 1‼R R
b← 110 1‼N N
112 1‼L R ↔ ,⊂[⎕IO+2] a[;b]
112 1‼M N ↔ ,⊂[⎕IO+2] a[;b]
</pre>
</pre>


Line 179: Line 179:


<pre>
<pre>
102 1‼L R ↔ {(2≢/¯1,(⊂¨⍋¨⍵)⌷¨⍵)/⍵} 112 1‼R R
102 1‼M N ↔ {(2≢/¯1,(⊂¨⍋¨⍵)⌷¨⍵)/⍵} 112 1‼N N
</pre>
</pre>

Latest revision as of 22:28, 14 May 2017

This case produces Partitions of the set {⍳M} into N ordered parts. Essentially, this case is the same as 102, except that the order of the elements is important so that there are more results by a factor of !N. For example, the 3-subset result of 1 2|3|4 for 102 is expanded to !4 (↔ 24) 3-subsets by permuting the values 1 2 3 4 in 24 ways.

  • M labeled balls (1), N labeled boxes (1), at least one ball per box (2)
  • Sensitive to ⎕IO
  • Counted result is an integer scalar
  • Generated result is a nested vector of nested integer vectors.

The count for this function is (!N)×M SN2 N where M SN2 N calculates the Stirling numbers of the 2nd kind..

For example:

If we have 4 labeled balls (❶❷❸❹) and 2 labeled boxes (12) with at least one ball per box, there are 14 (↔ (!2)×4 SN2 2 ↔ 2×7) ways to meet these criteria:



       


       


       


       



       



       


       


       



       



       



       



       


       


       

The diagram above corresponds to the nested array

      ⍪112 1‼4 2
  1 2 3  4
  4  1 2 3
  1 2 4  3
  3  1 2 4
  1 2  3 4
  3 4  1 2
  1 3 4  2
  2  1 3 4
  1 3  2 4
  2 4  1 3
  1 4  2 3
  2 3  1 4
  1  2 3 4
  2 3 4  1
      ⍝ Partitions of the set {⍳M} into
      ⍝   N ordered parts
      ⍝ Labeled balls & boxes, any # Balls per Box
      ⍪112 1‼3 3
  1  2  3
  2  1  3
  2  3  1
  1  3  2
  3  1  2
  3  2  1
      ⍪112 1‼3 2
  1 2  3
  3  1 2
  1 3  2
  2  1 3
  1  2 3
  2 3  1
      ⍪112 1‼3 1
  1 2 3

In general, this case is equivalent to calculating the unlabeled boxes (102) and then permuting the items from that result as in

a←⊃102 1‼M N
b← 110 1‼N N
112 1‼M N ↔ ,⊂[⎕IO+2] a[;b]

or vice-versa

102 1‼M N ↔ {(2≢/¯1,(⊂¨⍋¨⍵)⌷¨⍵)/⍵} 112 1‼N N