Point Notation
|
||||||||||||||||||||
Base, Pi, and Euler Point Notations are extensions to the familiar Decimal Point Notation as well as Exponential Point or Scientific Notation methods of entering numeric constants. Thanks to the designers of J for this clever idea. |
Base Point Notation
This notation makes it easy to enter numeric constants in an arbitrary base.
The number to the left of the b is the base of the number system for the characters to the right of the b. The base may be entered in several ways including integers, Exponential, Decimal, Pi, and Euler Point Notation, but not Base Point Notation.
For example, 1e3b111 is the same as 1000b111.
Note that the base may also be negative as in ¯1b0z or fractional as in 0.1b1234.
The characters to the right of the b may range from 0-9 or a-z where the latter range is a way of representing numbers from 10-35 in a single character. The uppercase letters (A-Z) have the same values as the corresponding lowercase case letters and may be used instead of or intermixed with them.
For example, 10bzzZ is the same as 10⊥35 35 35 35.
Euler Point Notation
This notation allows you to enter numeric constants as a certain computation involving e, the base of the natural logarithms. The numbers to the left and right of the x may be integers or in the form of Decimal or Exponential Point Notation, but not Euler Point Notation.
For example, 1e2x1.1 is the same as 100×(*1)*1.1.
Pi Point Notation
This notation allows you to enter numeric constants as a certain computation involving π. The numbers to the left and right of the p may be integers or in the form of Decimal or Exponential Point Notation, but not Pi Point Notation.
For example, 1e2p1.1 is the same as 100×(○1)*1.1.