Consistent Extensions in NARS2000: Difference between revisions

From NARS2000
Jump to navigationJump to search
Line 37: Line 37:
* Axis operator to Ravel:  The order of the values in the axis operator brackets is significant, and may transpose coordinates in the right argument before mapping the values to the result.  For example, <apl size="large">,[2 1] R</apl> and <apl size="large">,[1 2] R</apl> are both valid and have the same shape and values but, in general, the values are in a different order.
* Axis operator to Ravel:  The order of the values in the axis operator brackets is significant, and may transpose coordinates in the right argument before mapping the values to the result.  For example, <apl size="large">,[2 1] R</apl> and <apl size="large">,[1 2] R</apl> are both valid and have the same shape and values but, in general, the values are in a different order.
* Axis operator with user-defined functions/operators:  A user-defined function/operator may be sensitive to the axis operator as are various primitive functions and operators.  For example, <apl size="large">foo[2 3] R</apl> is valid if the function header is defined as <apl size="large">∇ Z←foo[X] R</apl>.
* Axis operator with user-defined functions/operators:  A user-defined function/operator may be sensitive to the axis operator as are various primitive functions and operators.  For example, <apl size="large">foo[2 3] R</apl> is valid if the function header is defined as <apl size="large">∇ Z←foo[X] R</apl>.
* Except for where fractional values are allowed (laminate and certain cases of ravel), axis operator values may be negative. That is, if the largest allowed value is <apl size="large">N</apl>, then the allowable range for axis operator values is <apl size="large">¯1-N</apl> to <apl size="large">N</apl>, inclusive.
* Axis operator values may be negative. That is, if the largest allowed value is <apl size="large">N</apl>, then the allowable range for axis operator values is <apl size="large">¯1-N</apl> to <apl size="large">N</apl>, inclusive.
* Strand left and right arguments and result to user-defined functions/operators along with optional left argument (e.g., <apl size="large">∇ Z←FOO (R1 R2 R3 R4)</apl> or, more fully, <apl size="large">∇ (Z1 Z2)←[L1 L2 L3] (LO OP2[X] RO) (R1 R2 R3 R4)</apl>.
* Strand left and right arguments and result to user-defined functions/operators along with optional left argument (e.g., <apl size="large">∇ Z←FOO (R1 R2 R3 R4)</apl> or, more fully, <apl size="large">∇ (Z1 Z2)←[L1 L2 L3] (LO OP2[X] RO) (R1 R2 R3 R4)</apl>.
* Note that brackets are '''required''' to surround the left argument of an ambivalent function as in <apl size="large">∇ Z←[L] FOO R</apl> — Is this an '''inconsistent''' extension?
* Note that brackets are '''required''' to surround the left argument of an ambivalent function as in <apl size="large">∇ Z←[L] FOO R</apl> — Is this an '''inconsistent''' extension?

Revision as of 21:10, 28 March 2008

The following features are considered consistent extensions to the Extended APL Standard in that they replace error-producing behavior with non-error-producing behavior:

Language Features

  • Sink: monadic left arrow (), e.g. ←A suppresses the display of A.
  • Unified index reference, assignment, and modify assignment (R[L], R[L]←A, and R[L]fn←A): these three forms all allow both Reach and Scatter indexing — that is, if L⊃R is valid, it is equivalent to ⊃R[⊂L], and if L⌷R is valid, it is equivalent to R[⊃∘.,/L] — Reach and Scatter indexing may appear together within a single instance of R[L], R[L]←A, and R[L]fn←A.
  • Dyadic operator jot () (composition) is used to join two functions or a function and a variable to produce a derived function (e.g., ,∘⍋∘⍋∘,) which is applied as a single function. For example, the function *∘2 when applied monadically, squares its argument.
  • Monadic operator null (): To aid in resolving ambiguities with slash/slope as function/operator, use this operator. It passes through all functions as functions, and forces the symbols slash/slope to be functions rather than operators. For example, use /⊙/3 4 instead of //3 4.
  • Monadic iota () extended to negative indices. For example, in origin-0, ⍳¯3 returns ¯3 ¯2 ¯1.
  • Monadic iota () extended to length > 1 vector right arguments returns an array of indices whose shape is that of the right argument (via an internal magic function).
  • Dyadic iota () extended to rank > 1 left arguments returns an array of vector indices to the left argument (via an internal magic function).
  • ± Infinity (e.g. _ for infinity and ¯_ for negative infinity) — considerable development work needs to be done to this feature to handle the many special cases.
  • Monadic and dyadic domino () — matrix inverse/divide extended to use Moore-Penrose pseudo-inverse algorithm via Singular Value Decomposition.
  • Prototypes for all primitive functions and operators.
  • System variables
    • ⎕FC (Format Control)
    • ⎕IC (Indeterminate Control)
  • System functions
    • 1 ⎕CR R (Canonical Representation -- vector result) and 2 ⎕CR R (matrix result)
    • ⎕DM (Diagnostic Message)
    • ⎕DR R and L ⎕DR R (Data Representation)
    • ⎕ERROR R (Signal Error)
    • ⎕SIZE R (Object Size)
    • ⎕SYSID (System Identification)
    • ⎕SYSVER (System Version)
    • ⎕TC and other related ⎕TCxxx (Terminal Character)
    • ⎕TYPE R (Object Prototype)
    • ⎕UCS R (Unicode Character Set)

Miscellaneous Syntax

  • Strand Assignment: A sequence of names enclosed in parentheses can be assigned to. For example, (A B)←1 2 is the same as A←1 followed by B←2.
  • Modify Assignment: An arbitrary (primitive or user-defined) dyadic function may appear immediately to the left of an assignment arrow. For example, A fn←1 is the same as A←A fn 1, and A[L]fn←1 is the same as A[L]←A[L] fn 1.
  • Modify Strand Assignment: An arbitrary (primitive or user-defined) dyadic function may appear immediately to the left of the assignment arrow used in Strand Assignment (e.g. (A B)fn←1 2 is the same as A←A fn 1 followed by B←B fn 2).
  • Function/operator assignment: A primitive function, operator, or derived function may be assigned to any available name (e.g., F←⍋, or F←¨, or F←∘, or F←+.×).
  • Axis operator with primitive scalar dyadic functions: The axis operator indicates how the coordinates of the lower rank argument map to the coordinates of the higher rank argument. For example, (1 2+[1] 2 3⍴R is equivalent to (⍉3 2⍴1 2)+2 3⍴R.
  • Axis operator with primitive scalar dyadic functions: The order of the values in the axis operator brackets is significant. For example, (2 3⍴L)+[1 2] 2 3 4⍴R and (3 2⍴L)+[2 1] 2 3 4⍴R are both valid but, in general, have different values.
  • Axis operator with the dyadic derived function from the Each operator: As with primitive scalar dyadic functions, the axis operator indicates how the coordinates of the lower rank argument map to the coordinates of the higher rank argument. For example, (2 3⍴L)⍴¨[1 2] 2 3 4⍴R is equivalent to (3 1 2⍉4⌿1 2 3⍴L)⍴¨2 3 4⍴R.
  • Axis operator to Ravel: The order of the values in the axis operator brackets is significant, and may transpose coordinates in the right argument before mapping the values to the result. For example, ,[2 1] R and ,[1 2] R are both valid and have the same shape and values but, in general, the values are in a different order.
  • Axis operator with user-defined functions/operators: A user-defined function/operator may be sensitive to the axis operator as are various primitive functions and operators. For example, foo[2 3] R is valid if the function header is defined as ∇ Z←foo[X] R.
  • Axis operator values may be negative. That is, if the largest allowed value is N, then the allowable range for axis operator values is ¯1-N to N, inclusive.
  • Strand left and right arguments and result to user-defined functions/operators along with optional left argument (e.g., ∇ Z←FOO (R1 R2 R3 R4) or, more fully, ∇ (Z1 Z2)←[L1 L2 L3] (LO OP2[X] RO) (R1 R2 R3 R4).
  • Note that brackets are required to surround the left argument of an ambivalent function as in ∇ Z←[L] FOO R — Is this an inconsistent extension?
  • User-defined function/operator prototype line label (⎕PROTOTYPE:): When the user-defined function/operator is called to produce a prototype, this entry point is where execution of the function starts.

System commands

  • )CLOSE
  • )EDIT
  • )EXIT
  • )NEWTAB
  • )RESET

Session Manager

  • Function editor: this feature may be invoked by typing by itself, or followed by a name, or )EDIT by itself, or )EDIT followed by a name, or by double-right-clicking on a function name in the session manager or function editor windows.