Infinity: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<p>The two infinities are now valid values to be used as the upper and lower numeric limits.  The infinity symbol (<apll>∞</apll>) is entered from the keyboard using the key combination '''Alt-f'''.  The other infinity is obtained from the positive form by preceding it with a negative symbol (<apll>¯∞</apll>).  The underbar symbol (<apll>_</apll>) is an alias for the infinity symbol on entry; however, when displaying a variable that contains an infinity, <apll>∞</apll> is used.</p>   
<p>The two infinities are now valid values to be used as the upper and lower numeric limits.  The infinity symbol (<apll>∞</apll>) is entered from the keyboard using the key combination '''Alt-f'''.  The other infinity is obtained from the positive form by preceding it with a negative symbol (<apll>¯∞</apll>).</p>   


<p>For example,</p>
<p>For example,</p>
Line 13: Line 13:
<apll>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;÷¯∞ ∞<br />
<apll>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;÷¯∞ ∞<br />
0 0</apll><br /><br />
0 0</apll><br /><br />
<apll>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;¯_ _ ¯∞ ∞<br />
<apll>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;('&lt;',a),a⍪a∘.&lt;a←¯∞ 0 ∞<br />
¯∞ ∞ ¯∞ ∞</apll><br /><br />
&nbsp;&nbsp;&lt; ¯∞ 0 ∞<br />
<apll>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;¯∞ 0 ∞∘.<¯∞ 0 <br />
&nbsp;¯∞&nbsp;&nbsp;0 1 1<br />
&nbsp;0 1 1<br />
&nbsp;&nbsp;0&nbsp;&nbsp;0 0 1<br />
&nbsp;0 0 1<br />
&nbsp;&nbsp;∞&nbsp;&nbsp;0 0 0</apll><br />
&nbsp;0 0 0</apll><br />
<br />
<br />



Revision as of 12:15, 18 August 2011

The two infinities are now valid values to be used as the upper and lower numeric limits. The infinity symbol () is entered from the keyboard using the key combination Alt-f. The other infinity is obtained from the positive form by preceding it with a negative symbol (¯∞).

For example,

      ⌊/⍬


      ⌈/⍬
¯∞


      9*999


      ÷0


      ÷¯∞ ∞
0 0


      ('<',a),a⍪a∘.<a←¯∞ 0 ∞
  < ¯∞ 0 ∞
 ¯∞  0 1 1
  0  0 0 1
  ∞  0 0 0


There are many cases that need to be examined to see how infinity should behave; this work has yet to be done, so you might notice some anomalous results using infinity.

Also, see the description of the system variable ⎕IC (Indeterminate Control) for a way to control how infinity along with other indeterminates are handled.