CombinatorialCase111: Difference between revisions
From NARS2000
Jump to navigationJump to search
No edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
This case produces '''<apll> | This case produces '''<apll>M</apll>-Tuples of <apll>N</apll> items'''. That is, all length <apll>M</apll> vectors with all possibilities of <apll>N</apll> items in each position, <apll>N*M</apll> rows all together. | ||
* <apll> | * <apll>M</apll> labeled balls (1), <apll>N</apll> labeled boxes (1), any # balls per box (1) | ||
* Sensitive to <apll>⎕IO</apll> | * Sensitive to <apll>⎕IO</apll> | ||
* Counted result is an integer scalar | * Counted result is an integer scalar | ||
* Generated result is an integer matrix. | * Generated result is an integer matrix. | ||
The count for this function is <apll> | The count for this function is <apll>N<sup>M</sup></apll> (<apll>↔ N*M</apll>). | ||
For example: | For example: | ||
Line 118: | Line 118: | ||
3 2 | 3 2 | ||
3 3 | 3 3 | ||
⍝ | ⍝ M-tuples of N items | ||
⍝ Labeled balls & boxes, any # Balls per Box | ⍝ Labeled balls & boxes, any # Balls per Box | ||
111 0‼3 2 | 111 0‼3 2 |
Revision as of 17:23, 14 May 2017
This case produces M-Tuples of N items. That is, all length M vectors with all possibilities of N items in each position, N*M rows all together.
- M labeled balls (1), N labeled boxes (1), any # balls per box (1)
- Sensitive to ⎕IO
- Counted result is an integer scalar
- Generated result is an integer matrix.
The count for this function is NM (↔ N*M).
For example:
If we have 2 labeled balls (❶❷) and 3 labeled boxes (123) with any # of balls per box, there are 9 (↔ 3*2) ways to meet these criteria:
|
|
|
|
|
|
|
|
|
The diagram above corresponds to
110 1‼2 3 1 1 1 2 1 3 2 1 2 2 2 3 3 1 3 2 3 3 ⍝ M-tuples of N items ⍝ Labeled balls & boxes, any # Balls per Box 111 0‼3 2 8 111 1‼3 2 1 1 1 1 1 2 1 2 1 1 2 2 2 1 1 2 1 2 2 2 1 2 2 2