CombinatorialCase111: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
This case produces <apll>L</apll>-'''Tuples''' of <apll>R</apll> items.  That is, all length <apll>L</apll> vectors with all possibilities of <apll>R</apll> items in each position, <apll>R*L</apll> rows all together.
This case produces '''<apll>L</apll>-Tuples of <apll>R</apll> items'''.  That is, all length <apll>L</apll> vectors with all possibilities of <apll>R</apll> items in each position, <apll>R*L</apll> rows all together.


* <apll>L</apll> labeled balls (1), <apll>R</apll> labeled boxes (1), any # balls per box (1)
* <apll>L</apll> labeled balls (1), <apll>R</apll> labeled boxes (1), any # balls per box (1)

Revision as of 20:48, 29 April 2017

This case produces L-Tuples of R items. That is, all length L vectors with all possibilities of R items in each position, R*L rows all together.

  • L labeled balls (1), R labeled boxes (1), any # balls per box (1)
  • Sensitive to ⎕IO
  • Counted result is an integer scalar
  • Generated result is an integer matrix.

The count for this function is RL (↔ R*L).

For example:

If we have 2 labeled balls (❶❷) and 3 labeled boxes (123) with any # of balls per box, there are 9 (↔ 3*2) ways to meet these criteria:


       
1 2 3
 
 
   
1 2 3
 
     
1 2 3
 
 
   
1 2 3
   
   
1 2 3
     
 
1 2 3
 
     
1 2 3
     
 
1 2 3
       
1 2 3

The diagram above corresponds to

      110 1‼2 3
1 1
1 2
1 3
2 1
2 2
2 3
3 1
3 2
3 3
      ⍝ L-tuples of R items
      ⍝ Labeled balls & boxes, any # Balls per Box
      111 0‼3 2
8
      111 1‼3 2
1 1 1
1 1 2
1 2 1
1 2 2
2 1 1
2 1 2
2 2 1
2 2 2