Power: Difference between revisions
From NARS2000
Jump to navigationJump to search
No edit summary |
|||
Line 57: | Line 57: | ||
<tr> | <tr> | ||
<td><apll> L⊥⍣¯1 R</apll></td> | <td valign="top"><apll> L⊥⍣¯1 R</apll></td> | ||
<td><apll><apll>(N⍴L)⊤R</apll> for <apll>N</apll> sufficiently large to display all digits of <apll>R</apll></td> | <td><apll><apll>(N⍴L)⊤R</apll> for <apll>N</apll> sufficiently large to display all digits of <apll>R</apll><br /> | ||
<div style="display: inline;"><apll> 10⊥⍣¯1 1234567890<br />1 2 3 4 5 6 7 8 9 0<br /> 10⊥10⊥⍣¯1 1234567890<br />1234567890</apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> ⊥⍣¯1 R</apll></td> | <td valign="top"><apll> ⊥⍣¯1 R</apll></td> | ||
<td><apll>2⊥⍣¯1 R</apll></td> | <td><apll>2⊥⍣¯1 R</apll><br /> | ||
<div style="display: inline;"><apll> ⊥⍣¯1 19<br />1 0 0 1 1<br /> 2⊥⊥⍣¯1 19<br />19</apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> L⊤⍣¯1 R</apll></td> | <td valign="top"><apll> L⊤⍣¯1 R</apll></td> | ||
<td><apll>L⊥R</apll></td> | <td><apll>L⊥R</apll><br /> | ||
<div style="display: inline;"><apll> 10 10 10⊤⍣¯1 2 3 4<br />234<br /> 10 10 10⊤10 10 10⊤⍣¯1 2 3 4<br />2 3 4</apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> ×/⍣¯1 R</apll></td> | <td valign="top"><apll> ×/⍣¯1 R</apll></td> | ||
<td><apll>πR</apll>, that is, factor <apll>R</apll></td> | <td><apll>πR</apll>, that is, factor <apll>R</apll> into primes<br /> | ||
<div style="display: inline;"><apll> ×/⍣¯1 130<br />2 5 13<br /> ×/×/⍣¯1 130<br />130</apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> π⍣¯1 R</apll></td> | <td valign="top"><apll> π⍣¯1 R</apll></td> | ||
<td><apll>×/R</apll>, that is, multiply together the factors</td> | <td><apll>×/R</apll>, that is, multiply together the factors<br /> | ||
<div style="display: inline;"><apll> π⍣¯1 2 5 13<br />130<br /> ππ⍣¯1 2 5 13<br />2 5 13</apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> +\⍣¯1 R</apll></td> | <td valign="top"><apll> +\⍣¯1 R</apll></td> | ||
<td><apll>¯2-\R</apll></td> | <td><apll>¯2-\R</apll><br /> | ||
<div style="display: inline;"><apll> +\⍣¯1 ⍳4<br />1 1 1 1<br /> +\+\⍣¯1 ⍳4<br />1 2 3 4 </apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> ¯2-\⍣¯1 R</apll></td> | <td valign="top"><apll> ¯2-\⍣¯1 R</apll></td> | ||
<td><apll> | <td><apll>+\R</apll><br /> | ||
<div style="display: inline;"><apll> ¯2-\⍣¯1 4⍴1<br />1 2 3 4<br /> ¯2-\¯2-\⍣¯1 4⍴1<br />1 1 1 1 </apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td valign="top"><apll> -\⍣¯1 R</apll></td> | ||
<td> | <td><apll>(2-\R)×(⍴R)⍴¯1 1</apll><br /> | ||
<div style="display: inline;"><apll> a←?5⍴10<br /> a<br />10 8 3 2 6<br /> -\⍣¯1 a<br />10 2 ¯5 1 4<br /> -\-\⍣¯1 a<br />10 8 3 2 6</apll></div></td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td valign="top"><apll> ÷\⍣¯1 R</apll></td> | ||
<td> | <td><apll>(2÷\R)*(⍴R)⍴¯1 1</apll><br /> | ||
<div style="display: inline;"><apll> a←?5⍴10<br /> a<br />10 8 3 2 6<br /> ÷\⍣¯1 a<br />10 1.25 0.375 1.5 3<br /> ÷\÷\⍣¯1 a<br />10 8 3 2 6</apll></div></td> | |||
</tr> | </tr> | ||
< | <tr> | ||
<td valign="top"><apll> +∘÷/⍣¯1 R</apll></td> | |||
<td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>⎕PP</apll> terms<br /> | |||
<div style="display: inline;"><apll> +∘÷/⍣¯1 449<_r/>303<br />1 2 13 3 1 2<br /> +∘÷/+∘÷/⍣¯1 449<_r/>303<br />449<_r/>303</apll></div></td> | |||
</tr> | |||
<apll>< | <tr> | ||
<td valign="top"><apll>L+∘÷/⍣¯1 R</apll></td> | |||
1 2 | <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>L</apll> terms<br /> | ||
<div style="display: inline;"><apll> 25 +∘÷/⍣¯1 *1<_x/><br />2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1 14 1 1 16 1<br /> 15 +∘÷/⍣¯1 ○1<_x/><br />3 7 15 1 292 1 1 1 2 1 3 1 14 2 1<br /> +∘÷\3 7 15 1<_x/> ⍝ Convergents to Pi<br />3 22<_r/>7 333<_r/>106 355<_r/>113</apll></div></td> | |||
1 | </tr> | ||
</table> | |||
1 1 1 1 | |||
1 | |||
1 | |||
3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 | |||
3 22<_r/>7 333<_r/>106 355<_r/>113 | |||
</ |
Revision as of 12:20, 19 December 2019
Z←{L} f⍣g R | successively applies the function f (or, if there is a Left argument, the function L∘f) to R until the expression Zn g Zn-1 returns a singleton 1. Zn and Zn-1 represent two consecutive applications of f (or L∘f) to R where Z0←R and Zn←f Zn-1 (or Zn←L∘f Zn-1). | ||
Z←{L} f⍣b R | for non-negative integer scalar b, successively applies the function f (or, if there is a Left argument, the function L∘f) to R, b number of times; for a negative integer scalar b, successively applies the inverse of the function f (or, if there is a Left argument, the inverse to the function L∘f), |b number of times |
||
L and R are arbitrary arrays. | |||
In the first case, Zn g Zn-1 must return a Boolean-valued singleton; otherwise a DOMAIN ERROR is signaled. | |||
In the second case, b must be an integer scalar, otherwise a DOMAIN ERROR is signaled. |
For example,
sqrt←{{0.5×⍵+⍺÷⍵}⍣=⍨⍵} ⍝ Calculate square root using Newton's method sqrt 2 1.414213562373095 fib←{⍵,+/¯2↑⍵} ⍝ Calculate a Fibonacci sequence fib⍣15 ⊢ 1 1 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 pow←{⍵=0:,1 ⋄ ⍺+⍡×⍣(⍵-1) ⍺} ⍝ Raise a polynomial to a non-negative integer power 1 ¯1 pow 5 1 ¯5 10 ¯10 5 ¯1 phi←1+∘÷⍣=1 ⍝ Calculate the Golden Ratio phi 1.618033988749894
Inverses
When the right operand to the Power Operator is a negative integer scalar, the inverse of the function left operand is applied to the right argument. At the moment, only a few inverse functions are available as follows:
Function | Meaning of Inverse |
L⊥⍣¯1 R | 10⊥⍣¯1 1234567890 1 2 3 4 5 6 7 8 9 0 10⊥10⊥⍣¯1 1234567890 1234567890 |
⊥⍣¯1 R | 2⊥⍣¯1 R ⊥⍣¯1 19 1 0 0 1 1 2⊥⊥⍣¯1 19 19 |
L⊤⍣¯1 R | L⊥R 10 10 10⊤⍣¯1 2 3 4 234 10 10 10⊤10 10 10⊤⍣¯1 2 3 4 2 3 4 |
×/⍣¯1 R | πR, that is, factor R into primes ×/⍣¯1 130 2 5 13 ×/×/⍣¯1 130 130 |
π⍣¯1 R | ×/R, that is, multiply together the factors π⍣¯1 2 5 13 130 ππ⍣¯1 2 5 13 2 5 13 |
+\⍣¯1 R | ¯2-\R +\⍣¯1 ⍳4 1 1 1 1 +\+\⍣¯1 ⍳4 1 2 3 4 |
¯2-\⍣¯1 R | +\R ¯2-\⍣¯1 4⍴1 1 2 3 4 ¯2-\¯2-\⍣¯1 4⍴1 1 1 1 1 |
-\⍣¯1 R | (2-\R)×(⍴R)⍴¯1 1 a←?5⍴10 a 10 8 3 2 6 -\⍣¯1 a 10 2 ¯5 1 4 -\-\⍣¯1 a 10 8 3 2 6 |
÷\⍣¯1 R | (2÷\R)*(⍴R)⍴¯1 1 a←?5⍴10 a 10 8 3 2 6 ÷\⍣¯1 a 10 1.25 0.375 1.5 3 ÷\÷\⍣¯1 a 10 8 3 2 6 |
+∘÷/⍣¯1 R | Display the Continued Fraction expansion of R to at most ⎕PP terms +∘÷/⍣¯1 449r303 1 2 13 3 1 2 +∘÷/+∘÷/⍣¯1 449r303 449r303 |
L+∘÷/⍣¯1 R | Display the Continued Fraction expansion of R to at most L terms 25 +∘÷/⍣¯1 *1x 2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1 14 1 1 16 1 15 +∘÷/⍣¯1 ○1x 3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 +∘÷\3 7 15 1x ⍝ Convergents to Pi 3 22r7 333r106 355r113 |