CombinatorialCase110: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
This case produces '''<apll>L</apll>-Permutations of <apll>R</apll> items''' (also called '''Partial Permutations''' or '''Sequences Without Repetition'''), where when <apll>L=R</apll> produces the familiar permutations <apll>!R</apll>.  The length of each permutation returned is always <apll>L</apll>.
This case produces '''<apll>M</apll>-Permutations of <apll>N</apll> items''' (also called '''Partial Permutations''' or '''Sequences Without Repetition'''), where when <apll>M=N</apll> produces the familiar permutations <apll>!N</apll>.  The length of each permutation returned is always <apll>M</apll>.


* <apll>L</apll> labeled balls (1), <apll>R</apll> labeled boxes (1), at most one ball per box (0)
* <apll>M</apll> labeled balls (1), <apll>N</apll> labeled boxes (1), at most one ball per box (0)
* Sensitive to <apll>⎕IO</apll>
* Sensitive to <apll>⎕IO</apll>
* Counted result is an integer scalar
* Counted result is an integer scalar
* Generated result is an integer matrix.
* Generated result is an integer matrix.


The count for this function is <apll>!⍠(-L) R</apll> where <apll>!⍠(L) R</apll> calculates the [[Variant#Rising_and_Falling_Factorials|'''Rising and Falling Factorial''']].
The count for this function is <apll>!⍠(-M) N</apll> where <apll>!⍠(M) N</apll> calculates the [[Variant#Rising_and_Falling_Factorials|'''Rising and Falling Factorial''']].


For example:
For example:
Line 85: Line 85:
3 1 2
3 1 2
3 2 1
3 2 1
       ⍝ Permutations of length L of R items
       ⍝ Permutations of length M of N items
       ⍝ Labeled balls & boxes, ≤1 # Balls per Box
       ⍝ Labeled balls & boxes, ≤1 # Balls per Box
       !3
       !3
Line 115: Line 115:
</pre>
</pre>


A function to calculate the permutations of <apll>R</apll> items could be defined as
A function to calculate the permutations of <apll>M</apll> items could be defined as


<pre>
<pre>
       perm←{110 1‼⍵ }
       perm←{110 1‼⍵}
</pre>
</pre>

Revision as of 17:20, 14 May 2017

This case produces M-Permutations of N items (also called Partial Permutations or Sequences Without Repetition), where when M=N produces the familiar permutations !N. The length of each permutation returned is always M.

  • M labeled balls (1), N labeled boxes (1), at most one ball per box (0)
  • Sensitive to ⎕IO
  • Counted result is an integer scalar
  • Generated result is an integer matrix.

The count for this function is !⍠(-M) N where !⍠(M) N calculates the Rising and Falling Factorial.

For example:

If we have 3 labeled balls (❶❷❸) and 3 labeled boxes (123) with at most one ball per box, there are 6 (↔ (!⍠¯3)3 ↔ 3×2×1) ways to meet these criteria:

1 2 3
1 2 3
1 2 3
1 2 3
1 2 3
1 2 3

The diagram above corresponds to

      110 1‼3 3
1 2 3
2 1 3
2 3 1
1 3 2
3 1 2
3 2 1
      ⍝ Permutations of length M of N items
      ⍝ Labeled balls & boxes, ≤1 # Balls per Box
      !3
6
      110‼3 3
6
      110 0‼3 3
6
      ⍴110 1‼3 3
6 3
      110 1‼3 3
1 2 3
2 1 3
2 3 1
1 3 2
3 1 2
3 2 1
      110 1‼2 3
1 2
2 1
1 3
3 1
2 3
3 2
      110 1‼1 3
1
2
3

A function to calculate the permutations of M items could be defined as

      perm←{110 1‼⍵}