Dilate: Difference between revisions

From NARS2000
Jump to navigationJump to search
(Created page with "<table border="1" cellpadding="5" cellspacing="0" rules="none" summary=""> <tr> <td> <table border="0" cellpadding="5" cellspacing="0" summary=""> <tr> <td val...")
 
No edit summary
Line 32: Line 32:
4<br />
4<br />
2 2 1<br />
2 2 1<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⍴⎕←&gt;2 2⍴1J2 3J4 4J3 2J1<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⍴⎕←&gt;2 2⍴1<pn>J</pn>2 3<pn>J</pn>4 4<pn>J</pn>3 2<pn>J</pn>1<br />
1 2<br />
1 2<br />
3 4<br />
3 4<br />
Line 39: Line 39:
2 1<br />
2 1<br />
2 2 2<br />
2 2 2<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⍴⎕←&gt;2 2⍴1i2j3k4 5i6j7k8 8i7j6k5 4i3j2k1<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⍴⎕←&gt;2 2⍴1<pn>i</pn>2<pn>j</pn>3<pn>k</pn>4 5<pn>i</pn>6<pn>j</pn>7<pn>k</pn>8 8<pn>i</pn>7<pn>j</pn>6<pn>k</pn>5 4<pn>i</pn>3<pn>j</pn>2<pn>k</pn>1<br />
1 2 3 4<br />
1 2 3 4<br />
5 6 7 8<br />
5 6 7 8<br />
Line 46: Line 46:
4 3 2 1<br />
4 3 2 1<br />
2 2 4 <br />
2 2 4 <br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⍴⎕←&gt;2 2⍴1i2j3k4l5ij6jk7kl8 9i10j11k12l13ij14jk15kl16 16i15j14k13l12ij11jk10kl9 8i7j6k5l4ij3jk2kl1<br />
&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;⍴⎕←&gt;2 2⍴1<pn>i</pn>2<pn>j</pn>3<pn>k</pn>4<pn>l</pn>5<pn>ij</pn>6<pn>jk</pn>7<pn>kl</pn>8 9<pn>i</pn>10<pn>j</pn>11<pn>k</pn>12<pn>l</pn>13<pn>ij</pn>14<pn>jk</pn>15<pn>kl</pn>16 16<pn>i</pn>15<pn>j</pn>14<pn>k</pn>13<pn>l</pn>12<pn>ij</pn>11<pn>jk</pn>10<pn>kl</pn>9 8<pn>i</pn>7<pn>j</pn>6<pn>k</pn>5<pn>l</pn>4<pn>ij</pn>3<pn>jk</pn>2<pn>kl</pn>1<br />
&nbsp;1&nbsp;&nbsp;2&nbsp;&nbsp;3&nbsp;&nbsp;4&nbsp;&nbsp;5&nbsp;&nbsp;6&nbsp;&nbsp;7&nbsp;&nbsp;8<br />
&nbsp;1&nbsp;&nbsp;2&nbsp;&nbsp;3&nbsp;&nbsp;4&nbsp;&nbsp;5&nbsp;&nbsp;6&nbsp;&nbsp;7&nbsp;&nbsp;8<br />
&nbsp;9 10 11 12 13 14 15 16<br />
&nbsp;9 10 11 12 13 14 15 16<br />

Revision as of 17:59, 9 April 2017

Z←>R extracts from R its Hypercomplex coefficients.
R is an arbitrary Real or Hypercomplex numeric array — otherwise, DOMAIN ERROR.
Z is the corresponding array of Real numbers of shape (⍴R),=R where =R is the Hypercomplex dimension (1, 2, 4, or 8) of R.


For example,

      ⍴⎕←>23
23
1
      ⍴⎕←>2 2⍴⍳4
1
2

3
4
2 2 1
      ⍴⎕←>2 2⍴1J2 3J4 4J3 2J1
1 2
3 4

4 3
2 1
2 2 2
      ⍴⎕←>2 2⍴1i2j3k4 5i6j7k8 8i7j6k5 4i3j2k1
1 2 3 4
5 6 7 8

8 7 6 5
4 3 2 1
2 2 4
      ⍴⎕←>2 2⍴1i2j3k4l5ij6jk7kl8 9i10j11k12l13ij14jk15kl16 16i15j14k13l12ij11jk10kl9 8i7j6k5l4ij3jk2kl1
 1  2  3  4  5  6  7  8
 9 10 11 12 13 14 15 16

16 15 14 13 12 11 10  9
 8  7  6  5  4  3  2  1
2 2 8

Identities

R ←→ <>R   for all R (see Condense for the definition of monadic Left Caret)
R ←→ ><R   for all R with (¯1↑⍴R)∊1 2 4 8

Acknowledgements

This symbol and its name were suggested by David A. Rabenhorst.