Primes: Difference between revisions
No edit summary |
|||
(8 intermediate revisions by 2 users not shown) | |||
Line 23: | Line 23: | ||
<p>For example,</p> | <p>For example,</p> | ||
<apll> | <apll><pre> | ||
2 2 2 3 5 | π120 | ||
2 2 2 3 5 | |||
4611686018427387903 | ×/⎕←π⎕←¯1+2*62 | ||
3 715827883 2147483647 | 4611686018427387903 | ||
4611686018427387903 | 3 715827883 2147483647 | ||
4611686018427387903 | |||
2305843009213693951 | π¯1+2*61 | ||
2305843009213693951 | |||
⍴π1 | |||
0 | |||
c←×/(a b)←1π?2⍴10*25x ⍝ Create two random 25-digit primes and their product | |||
a b c | |||
213379889007584782100623 7822072437371562999056237 1669072948495632279507879309030439547039369735651 | |||
πc ⍝ Factor the 50-digit number | |||
213379889007584782100623 7822072437371562999056237 | |||
⎕T-(πc)⊢⊢⎕T ⍝ How many seconds of CPU time to factor a 50-digit number? | |||
0.6204937084112316</pre></apll> | |||
Line 48: | Line 56: | ||
<td></td> | <td></td> | ||
<td></td> | <td></td> | ||
<td>returns an | <td>returns an array whose values depend upon which number-theoretic function chosen by <apll>L</apll> is applied to <apll>R</apll>.</td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Line 57: | Line 65: | ||
<table border="0" cellpadding="1" cellspacing="0" rules="none" summary="" style="margin-left: 20px;"> | <table border="0" cellpadding="1" cellspacing="0" rules="none" summary="" style="margin-left: 20px;"> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll>¯2</apll></td> | ||
<td> | <td> Rth prime function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll>¯1</apll></td> | ||
<td> | <td> Previous prime function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll> 0</apll></td> | ||
<td> Primality test function</td> | <td> Primality test function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll> 1</apll></td> | ||
<td> Next prime function</td> | <td> Next prime function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll> 2</apll></td> | ||
<td> | <td> Number of primes function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll>10</apll></td> | ||
<td> | <td> Divisor count function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll>11</apll></td> | ||
<td> | <td> Divisor sum function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll>12</apll></td> | ||
<td> Möbius function function</td> | <td> Möbius function function</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll> | <td><apll>13</apll></td> | ||
<td> Euler totient function</td> | <td> Euler totient function</td> | ||
</tr> | </tr> | ||
Line 104: | Line 112: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll>R</apll> is | <td><apll>R</apll> is an array consisting of positive integers to which one of the above functions is applied, element by element.</td> | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll>Z</apll> is an integer.</td> | <td><apll>Z</apll> is an integer array of the same shape as <apll>R</apll>.</td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
<br /> | <br /> | ||
== | == Rth Prime Function == | ||
<p>The Rth prime function (<apll>¯2πR</apll>) returns the <apll>R</apll><sup>th</sup> prime where <apll>2</apll> is the first prime. This function is sensitive to the index origin.</p> | |||
<p>For example, how many primes are less then or equal to <apll>1000003</apll>?</p> | |||
<apll><pre> | |||
¯2π1000003 | |||
15485927</pre></apll> | |||
== Previous Prime Function == | |||
<p>The | <p>The previous prime function (<apll>¯1πR</apll>) returns the prime that immediately precedes <apll>R</apll>.</p> | ||
<p>For example, what is the prime that immediately precedes <apll>1000000</apll>?</p> | |||
< | <apll><pre> | ||
¯1π1000000 | |||
999983</pre></apll> | |||
== Primality Test == | == Primality Test == | ||
<p>The primality test function (<apll> | <p>The primality test function (<apll>0πR</apll>) returns a <apll>1</apll> if <apll>R</apll> is a prime and <apll>0</apll> if not.</p> | ||
<p>For example, is <apll>1000003</apll> a prime?</p> | |||
<apll><pre> | |||
0π1000003 | |||
1</pre></apll> | |||
<p>List the primes up to 100</p> | |||
<apll><pre> | |||
⍸0π⍳100 | |||
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97</pre></apll> | |||
== Next Prime Function == | == Next Prime Function == | ||
<p>The next prime function (<apll> | <p>The next prime function (<apll>1πR</apll>) returns the prime that immediately follows <apll>R</apll>.</p> | ||
<p>For example, what is the next prime after <apll>1000000</apll>?</p> | |||
<apll><pre> | |||
1π1000000 | |||
1000003</pre></apll> | |||
== Number Of Primes Function == | |||
<p>The number of primes function (<apll>2πR</apll>) returns number of primes less than or equal to <apll>R</apll>.</p> | |||
<p>For example, what is the <apll>15485927</apll>th prime?</p> | |||
< | <apll><pre> | ||
2π15485927 | |||
1000003</pre></apll> | |||
== | == Divisor Count Function == | ||
<p>The | <p>The divisor count function (<apll>10πR</apll>) returns the number of divisors of a number. It is the same as <apll>×/1+∪⍦πR</apll> where <apll>πR</apll> returns the prime factors of <apll>R</apll> and <apll>∪⍦</apll> counts the number of occurrences of unique elements (in this case, the exponent vector of the unique primes). A divisor then consists of the product of zero or more of the unique primes which is why <apll>×/1+</apll> counts them.</p> | ||
== | == Divisor Sum Function == | ||
<p>The | <p>The divisor sum function (<apll>11πR</apll>) returns the sum of the divisors of a number. It is the same as <apll>×/(¯1+(∪f)*1+∪⍦f)÷¯1+∪f←πR</apll><sup>1</sup>. This function is used to recognize [http://en.wikipedia.org/wiki/Deficient_number deficient], [http://en.wikipedia.org/wiki/Perfect_number perfect], and [http://en.wikipedia.org/wiki/Abundant_number abundant] numbers.</p> | ||
== Möbius Function == | == Möbius Function == | ||
<p>The [http://en.wikipedia.org/wiki/M%C3%B6bius_function Möbius function] (<apll> | <p>The [http://en.wikipedia.org/wiki/M%C3%B6bius_function Möbius function] (<apll>12πR</apll>) returns information about the square free properties of <apll>R</apll>. If <apll>R</apll> is [http://en.wikipedia.org/wiki/Square-free_integer square free], the function returns <apll>1</apll> if <apll>R</apll> has an even number of prime factors, and <apll>¯1</apll> if it has an odd number of prime factors. If the argument is not square free, the function returns <apll>0</apll>. It is used in the [http://en.wikipedia.org/wiki/M%C3%B6bius_inversion_formula Möbius Inversion Formula] to invert general arithmetic functions.</p> | ||
== Totient Function == | == Totient Function == | ||
<p>The totient function (<apll> | <p>The totient function (<apll>13πR</apll>) (also called [http://en.wikipedia.org/wiki/Euler_phi Euler's Totient Function]) returns the number of positive integers less than or equal to <apll>R</apll> that are relatively prime to it (i.e., having no common positive factors other than 1). | ||
</p> | </p> | ||
== Examples == | |||
<p>Add together the first 100 primes:</p> | |||
<p>The Rth prime function (<apll>¯2πR</apll>) gives the value of the Rth prime, as in</p> | |||
<apll><pre> | |||
¯2π100 | |||
541</pre></apll> | |||
<p>The Index function (<apll>⍳R</apll>) produces a vector of integers of length <apll>R</apll>, as in</p> | |||
<apll><pre> | |||
⍳¯2π100 | |||
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 541</pre></apll> | |||
<p>The Primality Test function (<apll>0πR</apll>) returns a <apll>1</apll> if the corresponding element in <apll>R</apll> is a prime, <apll>0</apll> otherwise, as in</p> | |||
<apll><pre> | |||
0π⍳¯2π100 | |||
0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 ... 1</pre></apll> | |||
<p>The Indices function (<apll>⍸R</apll>) converts the argument <apll>R</apll> to indices (equivalent to <apll>(,R)/⍳×/⍴R</apll>), as in</p> | |||
<apll><pre> | |||
⍸0π⍳¯2π100 | |||
2 3 5 7 11 13 17 19 23 29 31 37 41 43 ... 541</pre></apll> | |||
<p>Finally, those numbers may be added together using plus reduction (<apll>+/</apll>), as in</p> | |||
<apll><pre> | |||
+/⍸0π⍳¯2π100 | |||
24133</pre></apll> | |||
== Notes == | == Notes == | ||
<sup>1</sup> [ | <sup>1</sup> [https://en.wikipedia.org/wiki/Divisor_function Formula for sum of divisors] |
Latest revision as of 15:59, 17 July 2020
|
||||
R is a scalar or one-element vector consisting of a positive integer to be factored. | ||||
Z is an integer vector whose values are the prime factors of R. |
For example,
π120 2 2 2 3 5 ×/⎕←π⎕←¯1+2*62 4611686018427387903 3 715827883 2147483647 4611686018427387903 π¯1+2*61 2305843009213693951 ⍴π1 0 c←×/(a b)←1π?2⍴10*25x ⍝ Create two random 25-digit primes and their product a b c 213379889007584782100623 7822072437371562999056237 1669072948495632279507879309030439547039369735651 πc ⍝ Factor the 50-digit number 213379889007584782100623 7822072437371562999056237 ⎕T-(πc)⊢⊢⎕T ⍝ How many seconds of CPU time to factor a 50-digit number? 0.6204937084112316
|
||||||||||||||||||
L is an integer scalar whose meaning is as follows
|
||||||||||||||||||
R is an array consisting of positive integers to which one of the above functions is applied, element by element. | ||||||||||||||||||
Z is an integer array of the same shape as R. |
Rth Prime Function
The Rth prime function (¯2πR) returns the Rth prime where 2 is the first prime. This function is sensitive to the index origin.
For example, how many primes are less then or equal to 1000003?
¯2π1000003 15485927
Previous Prime Function
The previous prime function (¯1πR) returns the prime that immediately precedes R.
For example, what is the prime that immediately precedes 1000000?
¯1π1000000 999983
Primality Test
The primality test function (0πR) returns a 1 if R is a prime and 0 if not.
For example, is 1000003 a prime?
0π1000003 1
List the primes up to 100
⍸0π⍳100 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97
Next Prime Function
The next prime function (1πR) returns the prime that immediately follows R.
For example, what is the next prime after 1000000?
1π1000000 1000003
Number Of Primes Function
The number of primes function (2πR) returns number of primes less than or equal to R.
For example, what is the 15485927th prime?
2π15485927 1000003
Divisor Count Function
The divisor count function (10πR) returns the number of divisors of a number. It is the same as ×/1+∪⍦πR where πR returns the prime factors of R and ∪⍦ counts the number of occurrences of unique elements (in this case, the exponent vector of the unique primes). A divisor then consists of the product of zero or more of the unique primes which is why ×/1+ counts them.
Divisor Sum Function
The divisor sum function (11πR) returns the sum of the divisors of a number. It is the same as ×/(¯1+(∪f)*1+∪⍦f)÷¯1+∪f←πR1. This function is used to recognize deficient, perfect, and abundant numbers.
Möbius Function
The Möbius function (12πR) returns information about the square free properties of R. If R is square free, the function returns 1 if R has an even number of prime factors, and ¯1 if it has an odd number of prime factors. If the argument is not square free, the function returns 0. It is used in the Möbius Inversion Formula to invert general arithmetic functions.
Totient Function
The totient function (13πR) (also called Euler's Totient Function) returns the number of positive integers less than or equal to R that are relatively prime to it (i.e., having no common positive factors other than 1).
Examples
Add together the first 100 primes:
The Rth prime function (¯2πR) gives the value of the Rth prime, as in
¯2π100 541
The Index function (⍳R) produces a vector of integers of length R, as in
⍳¯2π100 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 541
The Primality Test function (0πR) returns a 1 if the corresponding element in R is a prime, 0 otherwise, as in
0π⍳¯2π100 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 ... 1
The Indices function (⍸R) converts the argument R to indices (equivalent to (,R)/⍳×/⍴R), as in
⍸0π⍳¯2π100 2 3 5 7 11 13 17 19 23 29 31 37 41 43 ... 541
Finally, those numbers may be added together using plus reduction (+/), as in
+/⍸0π⍳¯2π100 24133