CombinatorialCase011: Difference between revisions

From NARS2000
Jump to navigationJump to search
mNo edit summary
No edit summary
 
(One intermediate revision by the same user not shown)
Line 3: Line 3:
* <apll>M</apll> unlabeled balls (0), <apll>N</apll> labeled boxes (1), any # balls per box (1)
* <apll>M</apll> unlabeled balls (0), <apll>N</apll> labeled boxes (1), any # balls per box (1)
* Sensitive to <apll>⎕IO</apll>
* Sensitive to <apll>⎕IO</apll>
* Allows Lexicographic and Gray Code order
* Counted result is an integer scalar
* Counted result is an integer scalar
* Generated result is an integer matrix.
* Generated result is an integer matrix.
Line 78: Line 79:


<pre>
<pre>
       011 1‼2 3
       11 1‼2 3 ⍝ Multicombinations in unspecified order
1 1
2 2
1 2
3 3
2 3
1 3
      11 2‼2 3 ⍝ Multicombinations in Lexicographic order
1 1
1 1
1 2
1 2
Line 85: Line 93:
2 3
2 3
3 3
3 3
      11 3‼2 3 ⍝ Multicombinations in Gray Code order
1 1
2 2
1 2
3 3
2 3
1 3
       ⍝ M Multicombinations of N items
       ⍝ M Multicombinations of N items
       ⍝ Unlabeled balls, labeled boxes, any # Balls per Box
       ⍝ Unlabeled balls, labeled boxes, any # Balls per Box
       011 1‼3 3
       11 2‼3 3
1 1 1
1 1 1
1 1 2
1 1 2
Line 98: Line 113:
2 3 3
2 3 3
3 3 3
3 3 3
       011 1‼3 2
       11 2‼3 2
1 1 1
1 1 1
1 1 2
1 1 2
1 2 2
1 2 2
2 2 2
2 2 2
       011 1‼3 1
       11 2‼3 1
1 1 1
1 1 1
</pre>
</pre>

Latest revision as of 16:49, 21 October 2017

This case produces M Multicombinations of N items. A multicombination is a collection of Multisets (sets which may contain repeated elements) according to certain criteria. In particular, it produces a matrix whose rows are multisets of length M, from the values ⍳N.

  • M unlabeled balls (0), N labeled boxes (1), any # balls per box (1)
  • Sensitive to ⎕IO
  • Allows Lexicographic and Gray Code order
  • Counted result is an integer scalar
  • Generated result is an integer matrix.

The count for this function is M!M+N-1.

For example:

If we have 2 unlabeled balls (●●) and 3 labeled boxes (123) with any # of balls per box, there are 6 (↔ 2!2+3-1) ways to meet these criteria:


       
1 2 3
 
 
   
1 2 3
 
     
1 2 3
   
   
1 2 3
     
 
1 2 3
       
1 2 3

The diagram above corresponds to:

      11 1‼2 3 ⍝ Multicombinations in unspecified order
1 1
2 2
1 2
3 3
2 3
1 3
      11 2‼2 3 ⍝ Multicombinations in Lexicographic order
1 1
1 2
1 3
2 2
2 3
3 3
      11 3‼2 3 ⍝ Multicombinations in Gray Code order
1 1
2 2
1 2
3 3
2 3
1 3
      ⍝ M Multicombinations of N items
      ⍝ Unlabeled balls, labeled boxes, any # Balls per Box
      11 2‼3 3
1 1 1
1 1 2
1 1 3
1 2 2
1 2 3
1 3 3
2 2 2
2 2 3
2 3 3
3 3 3
      11 2‼3 2
1 1 1
1 1 2
1 2 2
2 2 2
      11 2‼3 1
1 1 1

In general, this case is related to that of Combinations (010) via the following identities:

010 1‼M N ↔ (011 1‼M,N-M-1)+[⎕IO+1] 0..M-1
011 1‼M N ↔ (010 1‼M,M+N-1)-[⎕IO+1] 0..M-1