CombinatorialCase001: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
This case produces the '''Partitions of the number''' L into at most R parts.
This case produces the '''Partitions of the number M into at most N parts'''.


* <apll>L</apll> unlabeled balls (0), <apll>R</apll> unlabeled boxes (0), any # of balls per box (1)
* <apll>M</apll> unlabeled balls (0), <apll>N</apll> unlabeled boxes (0), any # of balls per box (1)
* Not <apll>⎕IO</apll>-sensitive
* Not <apll>⎕IO</apll>-sensitive
* Counted result is an integer scalar
* Counted result is an integer scalar
* Generated result is a nested vector of integer vectors.
* Generated result is a nested vector of integer vectors.


The count for this function is <apll>(L+R)PN R</apll> where <apll>L PN R</apll> calculates the number of [https://en.wikipedia.org/wiki/Partition_(number_theory) Partitions] of the number <apll>L</apll> into exactly <apll>R</apll> parts.
The count for this function is <apll>(M+N)PN N</apll> where <apll>M PN N</apll> calculates the number of [https://en.wikipedia.org/wiki/Partition_(number_theory)#Restricted_part_size_or_number_of_parts Partitions] of the number <apll>M</apll> into exactly <apll>N</apll> parts.


For example:
For example:
Line 96: Line 96:
  3 2 1
  3 2 1
  2 2 2
  2 2 2
       ⍝ Partitions of L into at most R parts
       ⍝ Partitions of M into at most N parts
       ⍝ Unlabeled balls & boxes, any #bpb
       ⍝ Unlabeled balls & boxes, any # Balls per Box
       ⍪001 1‼5 5
       ⍪001 1‼5 5
  5
  5
Line 128: Line 128:
==Identities==
==Identities==


As shown in [https://en.wikipedia.org/wiki/Twelvefold_way#case_fnx Wikipedia], <apll>(L+R)PN R ↔ +/L PN¨0..R</apll>.
As shown in [https://en.wikipedia.org/wiki/Twelvefold_way#case_fnx Wikipedia], <apll>(M+N)PN N ↔ +/M PN¨0..N</apll>.


Because partitions of <apll>L</apll> into <apll>R</apll> non-negative parts ([[CombinatorialCase001|<apll>001</apll>]]) is the same as partitions of <apll>L+R</apll> into <apll>R</apll> positive parts ([[CombinatorialCase002|<apll>002</apll>]]), these cases are related by the following identity:
Because partitions of <apll>M</apll> into <apll>N</apll> non-negative parts ([[CombinatorialCase001|<apll>001</apll>]]) is the same as partitions of <apll>M+N</apll> into <apll>N</apll> positive parts ([[CombinatorialCase002|<apll>002</apll>]]), these cases are related by the following identity:


<apll>001 1‼L R ↔ (⊂[⎕IO+1] ¯1+002 1‼(L+R) R)~¨0</apll>
<apll>001 1‼M N ↔ (⊂[⎕IO+1] ¯1+002 1‼(M+N) N)~¨0</apll>

Latest revision as of 18:49, 19 June 2017

This case produces the Partitions of the number M into at most N parts.

  • M unlabeled balls (0), N unlabeled boxes (0), any # of balls per box (1)
  • Not ⎕IO-sensitive
  • Counted result is an integer scalar
  • Generated result is a nested vector of integer vectors.

The count for this function is (M+N)PN N where M PN N calculates the number of Partitions of the number M into exactly N parts.

For example:

If we have 6 unlabeled balls (●●●●●●) and 3 unlabeled boxes with any # of balls per box, there are 7 (↔ (6+3)PN 3) ways to meet these criteria:






       
     
 




 
 
 
 
 
   
     
 
 



 
 
 
 

   
     
 
 



 
 
 
 
 
 
 
 
 
 
     
 
 
 


 
 
 


   
     
 
 
 


 
 
 
 

 
 
 
 
 
     
 
 
 
 

 
 
 
 

 
 
 
 

     

The diagram above corresponds to the nested array

      ⍪001 1‼6 3
 6
 5 1
 4 2
 4 1 1
 3 3
 3 2 1
 2 2 2
      ⍝ Partitions of M into at most N parts
      ⍝ Unlabeled balls & boxes, any # Balls per Box
      ⍪001 1‼5 5
 5
 4 1
 3 2
 3 1 1
 2 2 1
 2 1 1 1
 1 1 1 1 1
      ⍪001 1‼5 4
 5
 4 1
 3 2
 3 1 1
 2 2 1
 2 1 1 1
      ⍪001 1‼5 3
 5
 4 1
 3 2
 3 1 1
 2 2 1
      ⍪001 1‼5 2
 5
 4 1
 3 2
      ⍪001 1‼5 1
 5

Identities

As shown in Wikipedia, (M+N)PN N ↔ +/M PN¨0..N.

Because partitions of M into N non-negative parts (001) is the same as partitions of M+N into N positive parts (002), these cases are related by the following identity:

001 1‼M N ↔ (⊂[⎕IO+1] ¯1+002 1‼(M+N) N)~¨0