Index Generator: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
No edit summary
 
(One intermediate revision by one other user not shown)
Line 4: Line 4:
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <tr>
     <tr>
       <td><apll>Z←⍳R</apll></td>
       <td valign="top"><apll>Z←⍳R</apll></td>
       <td></td>
       <td></td>
       <td></td>
       <td></td>
Line 16: Line 16:
</tr>
</tr>
<tr>
<tr>
   <td><apll>Z</apll> is an integer vector of length <apll>|R</apll>whose values range from <apll>⎕IO+R</apll> to <apll>⎕IO-1</apll>.</td>
   <td><apll>Z</apll> is an integer vector of length <apll>|R</apll> whose values range from <apll>⎕IO+R</apll> to <apll>⎕IO-1</apll>.</td>
</tr>
</tr>
<tr>
<tr>
   <td>This feature extends monadic iota to negative arguments.</td>
   <td>This feature extends monadic iota to negative arguments.</td>
</tr>
<tr>
  <td>This function is sensitive to <apll>⎕IO</apll> and <apll>⎕FEATURE</apll>.  In particular, <apll>⎕FEATURE[⎕IO]</apll> must be <apll>1</apll> in order for negative values in <apll>R</apll> to be accepted; otherwise a <apll>DOMAIN ERROR</apll> is signalled.</td>
</tr>
</tr>
</table>
</table>
Line 39: Line 42:
<apll>¯2 ¯1 0</apll>
<apll>¯2 ¯1 0</apll>


<p>This function is used to create [[APA|Arithmetic Progression Arrays (APAs)]].  For example, <apll>Z←2 3 4⍴⍳24</apll> has a very compact storage consisting of the array shape (<apll>2 3 4</apll>), the starting offset (<apll>⎕IO</apll>) and multiplier (<apll>1</apll>), plus the normal array overhead (which includes the number of elements (<apll>24</apll>)).</p>
<p>This function is used to create [[APA|Arithmetic Progression Arrays (APAs)]].  For example, <apll>2 3 4⍴⍳24</apll> has a very compact storage consisting of the array shape (<apll>2 3 4</apll>), the starting offset (<apll>⎕IO</apll>) and multiplier (<apll>1</apll>), plus the normal array overhead (which includes the number of elements (<apll>24</apll>)).</p>




Line 48: Line 51:
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <table border="0" cellpadding="5" cellspacing="0" summary="">
     <tr>
     <tr>
       <td><apll>Z←⍳R</apll></td>
       <td valign="top"><apll>Z←⍳R</apll></td>
       <td></td>
       <td></td>
       <td></td>
       <td></td>
Line 64: Line 67:
<tr>
<tr>
   <td>This feature extends monadic iota to multi-element vector arguments.</td>
   <td>This feature extends monadic iota to multi-element vector arguments.</td>
</tr>
<tr>
  <td>This function is sensitive to <apll>⎕IO</apll> and <apll>⎕FEATURE</apll>.  In particular, <apll>⎕FEATURE[⎕IO]</apll> must be <apll>1</apll> in order for negative values in <apll>R</apll> to be accepted; otherwise a <apll>DOMAIN ERROR</apll> is signalled.</td>
</tr>
</tr>
</table>
</table>

Latest revision as of 10:34, 26 May 2013

Z←⍳R returns a vector of consecutive ascending integers.
R is a negative integer scalar or one-element vector.
Z is an integer vector of length |R whose values range from ⎕IO+R to ⎕IO-1.
This feature extends monadic iota to negative arguments.
This function is sensitive to ⎕IO and ⎕FEATURE. In particular, ⎕FEATURE[⎕IO] must be 1 in order for negative values in R to be accepted; otherwise a DOMAIN ERROR is signalled.


For example, in origin-0

      ⍳3
0 1 2

      ⍳¯3
¯3 ¯2 ¯1

and in origin-1

      ⍳3
1 2 3

      ⍳¯3
¯2 ¯1 0

This function is used to create Arithmetic Progression Arrays (APAs). For example, 2 3 4⍴⍳24 has a very compact storage consisting of the array shape (2 3 4), the starting offset (⎕IO) and multiplier (1), plus the normal array overhead (which includes the number of elements (24)).


Z←⍳R returns an array of integer indices suitable for indexing all the elements of an array of shape |R.
R is an integer vector of length > 1.
Z is a nested array of shape |R whose items are each integer vectors of length ⍴⍴R and whose values range from ⎕IO+R to (⍴R)⍴⎕IO-1.
This feature extends monadic iota to multi-element vector arguments.
This function is sensitive to ⎕IO and ⎕FEATURE. In particular, ⎕FEATURE[⎕IO] must be 1 in order for negative values in R to be accepted; otherwise a DOMAIN ERROR is signalled.


For example, in origin-0

      ⍳2 3
 0 0  0 1  0 2
 1 0  1 1  1 2

      ⍳2 ¯3
 0 ¯3  0 ¯2  0 ¯1
 1 ¯3  1 ¯2  1 ¯1

and in origin-1

      ⍳2 3
 1 1  1 2  1 3
 2 1  2 2  2 3

      ⍳2 ¯3
 1 ¯2  1 ¯1  1 0
 2 ¯2  2 ¯1  2 0



For example, taking into account both of the above extensions, A, A[⍳⍴A], A[⍳-⍴A], and even A[⍳¯1 1[?(⍴⍴A)⍴2]×⍴A] are all identical for any array A in either origin.


This last extension is implemented via an internal magic function due to Carl M. Cheney:

    ∇ Z←#MonIota V
[1]   Z←⊃∘.,/⍳¨V
    ∇