Dilate: Difference between revisions
From NARS2000
Jump to navigationJump to search
No edit summary |
Sudleyplace (talk | contribs) No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 4: | Line 4: | ||
<table border="0" cellpadding="5" cellspacing="0" summary=""> | <table border="0" cellpadding="5" cellspacing="0" summary=""> | ||
<tr> | <tr> | ||
<td valign="top"><apll>Z←>R</apll></td> | <td valign="top"><apll>Z←>R</apll> or <apll>Z←>[X] R</apll></td> | ||
<td></td> | <td></td> | ||
<td></td> | <td></td> | ||
Line 11: | Line 11: | ||
</table> | </table> | ||
</td> | </td> | ||
</tr> | |||
<tr> | |||
<td><apll>X</apll> is an optional numeric singleton axis with <apll>X∊⍳1+⍴⍴R</apll>. If <apll>[X]</apll> is omitted, the operation applies to the last axis plus one.</td> | |||
</tr> | </tr> | ||
<tr> | <tr> | ||
Line 16: | Line 19: | ||
</tr> | </tr> | ||
<tr> | <tr> | ||
<td><apll>Z</apll> is the corresponding array of Real numbers of shape <apll>(⍴R) | <td><apll>Z</apll> is the corresponding array of Real numbers of shape <apll>((=R),⍴R)[⍋⍋X≠⍳1+⍴⍴R]</apll> where <apll>=R</apll> is the Hypercomplex dimension of <apll>R</apll> as in <apll>(=R)∊1 2 4 8</apll>.</td> | ||
</tr> | </tr> | ||
</table> | </table> | ||
Line 22: | Line 25: | ||
<p>For example,</p> | <p>For example,</p> | ||
<apll>& | <apll><pre> | ||
23 | ⍴⎕←>23 | ||
1 | 23 | ||
1 | |||
1 | ⍴⎕←>[1] 23 | ||
2 | 23 | ||
1 | |||
3 | ⍴⎕←>2 2⍴⍳4 | ||
4 | 1 | ||
2 2 1 | 2 | ||
3 | |||
4 | |||
< | 2 2 1 | ||
⍴⎕←>2 2⍴1<hc>J</hc>2 3<hc>J</hc>4 4<hc>J</hc>3 2<hc>J</hc>1 | |||
2 1 | 1 2 | ||
2 2 2 | 3 4 | ||
1 2 3 4 | 4 3 | ||
5 6 7 8 | 2 1 | ||
2 2 2 | |||
8 7 6 5 | ⍴⎕←>[1] 2 2⍴1<hc>J</hc>2 3<hc>J</hc>4 4<hc>J</hc>3 2<hc>J</hc>1 | ||
4 3 2 1 | 1 3 | ||
2 2 4 | 4 2 | ||
2 4 | |||
3 1 | |||
2 2 2 | |||
16 15 14 13 12 11 10 | ⍴⎕←>2 2⍴1<hc>i</hc>2<hc>j</hc>3<hc>k</hc>4 5<hc>i</hc>6<hc>j</hc>7<hc>k</hc>8 8<hc>i</hc>7<hc>j</hc>6<hc>k</hc>5 4<hc>i</hc>3<hc>j</hc>2<hc>k</hc>1 | ||
1 2 3 4 | |||
2 2 8< | 5 6 7 8 | ||
</apll> | |||
8 7 6 5 | |||
4 3 2 1 | |||
2 2 4 | |||
⍴⎕←>2 2⍴1<hc>i</hc>2<hc>j</hc>3<hc>k</hc>4<hc>l</hc>5<hc>ij</hc>6<hc>jk</hc>7<hc>kl</hc>8 9<hc>i</hc>10<hc>j</hc>11<hc>k</hc>12<hc>l</hc>13<hc>ij</hc>14<hc>jk</hc>15<hc>kl</hc>16 16<hc>i</hc>15<hc>j</hc>14<hc>k</hc>13<hc>l</hc>12<hc>ij</hc>11<hc>jk</hc>10<hc>kl</hc>9 8<hc>i</hc>7<hc>j</hc>6<hc>k</hc>5<hc>l</hc>4<hc>ij</hc>3<hc>jk</hc>2<hc>kl</hc>1 | |||
1 2 3 4 5 6 7 8 | |||
9 10 11 12 13 14 15 16 | |||
16 15 14 13 12 11 10 9 | |||
8 7 6 5 4 3 2 1 | |||
2 2 8 | |||
</pre></apll> | |||
==Identities== | ==Identities== | ||
<apll>R ←→ <>R</apll> for all <apll>R</apll> (see [[Condense]] for the definition of monadic Left Caret)<br /> | <apll> R ←→ < > R</apll> for all <apll>R</apll> (see [[Condense]] for the definition of monadic Left Caret)<br /> | ||
<apll>R ←→ ><R</apll> for all <apll>R</apll> with <apll>( | <apll> R ←→ <[X] >[X] R</apll> for all <apll>R</apll><br /> | ||
<apll> R ←→ > < R</apll> for all <apll>R</apll> with <apll>(¯1↑⍴ R)∊1 2 4 8</apll><br /> | |||
<apll>1/R ←→ > < R</apll> for all <apll>R</apll> with <apll>(¯1↑⍴1/R)∊1 2 4 8</apll><br /> | |||
<apll> R ←→ >[X] <[X] R</apll> for all non-scalar <apll>R</apll> with <apll>(⍴R)[X]∊1 2 4 8</apll> | |||
== Acknowledgements== | == Acknowledgements== | ||
<p>This symbol and its name were suggested by David A. Rabenhorst.</p> | <p>This symbol and its name were suggested by David A. Rabenhorst.</p> |
Latest revision as of 16:13, 15 April 2018
|
||||
X is an optional numeric singleton axis with X∊⍳1+⍴⍴R. If [X] is omitted, the operation applies to the last axis plus one. | ||||
R is an arbitrary Real or Hypercomplex numeric array — otherwise, DOMAIN ERROR. | ||||
Z is the corresponding array of Real numbers of shape ((=R),⍴R)[⍋⍋X≠⍳1+⍴⍴R] where =R is the Hypercomplex dimension of R as in (=R)∊1 2 4 8. |
For example,
⍴⎕←>23 23 1 ⍴⎕←>[1] 23 23 1 ⍴⎕←>2 2⍴⍳4 1 2 3 4 2 2 1 ⍴⎕←>2 2⍴1J2 3J4 4J3 2J1 1 2 3 4 4 3 2 1 2 2 2 ⍴⎕←>[1] 2 2⍴1J2 3J4 4J3 2J1 1 3 4 2 2 4 3 1 2 2 2 ⍴⎕←>2 2⍴1i2j3k4 5i6j7k8 8i7j6k5 4i3j2k1 1 2 3 4 5 6 7 8 8 7 6 5 4 3 2 1 2 2 4 ⍴⎕←>2 2⍴1i2j3k4l5ij6jk7kl8 9i10j11k12l13ij14jk15kl16 16i15j14k13l12ij11jk10kl9 8i7j6k5l4ij3jk2kl1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 2 2 8
Identities
R ←→ < > R for all R (see Condense for the definition of monadic Left Caret)
R ←→ <[X] >[X] R for all R
R ←→ > < R for all R with (¯1↑⍴ R)∊1 2 4 8
1/R ←→ > < R for all R with (¯1↑⍴1/R)∊1 2 4 8
R ←→ >[X] <[X] R for all non-scalar R with (⍴R)[X]∊1 2 4 8
Acknowledgements
This symbol and its name were suggested by David A. Rabenhorst.