Power: Difference between revisions

From NARS2000
Jump to navigationJump to search
Line 60: Line 60:


<tr>
<tr>
   <td valign="top"><apll>   L⊥⍣¯1  R</apll></td>
   <td valign="top"><apll>     L⊥⍣¯1  R</apll></td>
   <td><apll><apll>(N⍴L)⊤R</apll> for <apll>N</apll> sufficiently large to display all digits of <apll>R</apll><br />
   <td><apll><apll>(N⍴L)⊤R</apll> for <apll>N</apll> sufficiently large to display all digits of <apll>R</apll><br />
<div style="display: inline;"><apll>        10⊥⍣¯1  1234567890<br />1 2 3 4 5 6 7 8 9 0<br />      10⊥10⊥⍣¯1  1234567890<br />1234567890</apll></div></td>
<div style="display: inline;"><apll>        10⊥⍣¯1  1234567890<br />1 2 3 4 5 6 7 8 9 0<br />      10⊥10⊥⍣¯1  1234567890<br />1234567890</apll></div></td>
Line 67: Line 67:


<tr>
<tr>
   <td valign="top"><apll>   ⊥⍣¯1  R</apll></td>
   <td valign="top"><apll>     ⊥⍣¯1  R</apll></td>
   <td><apll>2⊥⍣¯1  R</apll><br />
   <td><apll>2⊥⍣¯1  R</apll><br />
<div style="display: inline;"><apll>        ⊥⍣¯1  19<br />1 0 0 1 1<br />      2⊥⊥⍣¯1  19<br />19</apll></div></td>
<div style="display: inline;"><apll>        ⊥⍣¯1  19<br />1 0 0 1 1<br />      2⊥⊥⍣¯1  19<br />19</apll></div></td>
Line 74: Line 74:


<tr>
<tr>
   <td valign="top"><apll>   L⊤⍣¯1  R</apll></td>
   <td valign="top"><apll>     L⊤⍣¯1  R</apll></td>
   <td><apll>L⊥R</apll><br />
   <td><apll>L⊥R</apll><br />
<div style="display: inline;"><apll>              10 10 10⊤⍣¯1  2 3 4<br />234<br />      10 10 10⊤10 10 10⊤⍣¯1  2 3 4<br />2 3 4<br />      10 10 10⊤⍣¯1  10 10 10⊤234<br />234</apll></div></td>
<div style="display: inline;"><apll>              10 10 10⊤⍣¯1  2 3 4<br />234<br />      10 10 10⊤10 10 10⊤⍣¯1  2 3 4<br />2 3 4<br />      10 10 10⊤⍣¯1  10 10 10⊤234<br />234</apll></div></td>
Line 81: Line 81:


<tr>
<tr>
   <td valign="top"><apll>   ×/⍣¯1  R</apll></td>
   <td valign="top"><apll>     ×/⍣¯1  R</apll></td>
   <td><apll>πR</apll>, that is, factor <apll>R</apll> into primes<br />
   <td><apll>πR</apll>, that is, factor <apll>R</apll> into primes<br />
<div style="display: inline;"><apll>        ×/⍣¯1  130<br />2 5 13<br />      ×/×/⍣¯1  130<br />130<br />      ×/⍣¯1 ×/2 5 13<br />2 5 13</apll></div></td>
<div style="display: inline;"><apll>        ×/⍣¯1  130<br />2 5 13<br />      ×/×/⍣¯1  130<br />130<br />      ×/⍣¯1 ×/2 5 13<br />2 5 13</apll></div></td>
Line 88: Line 88:


<tr>
<tr>
   <td valign="top"><apll>   π⍣¯1  R</apll></td>
   <td valign="top"><apll>     π⍣¯1  R</apll></td>
   <td><apll>×/R</apll>, that is, multiply together the prime factors in <apll>R</apll><br />
   <td><apll>×/R</apll>, that is, multiply together the prime factors in <apll>R</apll><br />
<div style="display: inline;"><apll>      π⍣¯1  2 5 13<br />130<br />      ππ⍣¯1  2 5 13<br />2 5 13<br />      π⍣¯1 π130<br />130</apll></div></td>
<div style="display: inline;"><apll>      π⍣¯1  2 5 13<br />130<br />      ππ⍣¯1  2 5 13<br />2 5 13<br />      π⍣¯1 π130<br />130</apll></div></td>
Line 95: Line 95:


<tr>
<tr>
   <td valign="top"><apll>   +\⍣¯1  R</apll></td>
   <td valign="top"><apll> +\[X]⍣¯1  R</apll></td>
   <td><apll>¯2-\R</apll><br />
   <td><apll>¯2-\[X] R</apll><br />
<div style="display: inline;"><apll>        +\⍣¯1  ⍳4<br />1 1 1 1<br />      +\+\⍣¯1  ⍳4<br />1 2 3 4<br />      +\⍣¯1+\⍳4<br />1 2 3 4</apll></div></td>
<div style="display: inline;"><apll>        +\⍣¯1  ⍳4<br />1 1 1 1<br />      +\+\⍣¯1  ⍳4<br />1 2 3 4<br />      +\⍣¯1+\⍳4<br />1 2 3 4</apll></div></td>
<td>L and R</td>
<td>L and R</td>
Line 102: Line 102:


<tr>
<tr>
   <td valign="top"><apll> ¯2-\⍣¯1  R</apll></td>
   <td valign="top"><apll>¯2-\[X]⍣¯1  R</apll></td>
   <td><apll>+\R</apll><br />
   <td><apll>+\[X] R</apll><br />
<div style="display: inline;"><apll>          ¯2-\⍣¯1  4⍴1<br />1 2 3 4<br />      ¯2-\¯2-\⍣¯1  4⍴1<br />1 1 1 1<br />      ¯2-\⍣¯1 ¯2-\  4⍴1 <br />1 1 1 1</apll></div></td>
<div style="display: inline;"><apll>          ¯2-\⍣¯1  4⍴1<br />1 2 3 4<br />      ¯2-\¯2-\⍣¯1  4⍴1<br />1 1 1 1<br />      ¯2-\⍣¯1 ¯2-\  4⍴1 <br />1 1 1 1</apll></div></td>
<td>L and R</td>
<td>L and R</td>
Line 109: Line 109:


<tr>
<tr>
   <td valign="top"><apll>   -\⍣¯1  R</apll></td>
   <td valign="top"><apll> -\[X]⍣¯1  R</apll></td>
   <td><apll>(2-\R)×(⍴R)⍴¯1 1</apll><br />
   <td><apll>(2-\[X] R)×[X](⍴R)[X]⍴¯1 1</apll><br />
<div style="display: inline;"><apll>      a←?5⍴10<br />      a<br />10 8 3 2 6<br />        -\⍣¯1  a<br />10 2 ¯5 1 4<br />      -\-\⍣¯1  a<br />10 8 3 2 6<br />      -\⍣¯1-\a<br />10 8 3 2 6 </apll></div></td>
<div style="display: inline;"><apll>      a←?5⍴10<br />      a<br />10 8 3 2 6<br />        -\⍣¯1  a<br />10 2 ¯5 1 4<br />      -\-\⍣¯1  a<br />10 8 3 2 6<br />      -\⍣¯1-\a<br />10 8 3 2 6 </apll></div></td>
<td>L and R</td>
<td>L and R</td>
Line 116: Line 116:


<tr>
<tr>
   <td valign="top"><apll>   ÷\⍣¯1  R</apll></td>
   <td valign="top"><apll> ÷\[X]⍣¯1  R</apll></td>
   <td><apll>(2÷\R)*(⍴R)⍴¯1 1</apll><br />
   <td><apll>(2÷\[X] R)*[X](⍴R)[X]⍴¯1 1</apll><br />
<div style="display: inline;"><apll>      a←?5⍴10<br />      a<br />10 8 3 2 6<br />        ÷\⍣¯1  a<br />10 1.25 0.375 1.5 3<br />      ÷\÷\⍣¯1  a<br />10 8 3 2 6<br />      ÷\⍣¯1÷\a<br />10 8 3 2 6</apll></div></td>
<div style="display: inline;"><apll>      a←?5⍴10<br />      a<br />10 8 3 2 6<br />        ÷\⍣¯1  a<br />10 1.25 0.375 1.5 3<br />      ÷\÷\⍣¯1  a<br />10 8 3 2 6<br />      ÷\⍣¯1÷\a<br />10 8 3 2 6</apll></div></td>
<td>L and R</td>
<td>L and R</td>
</tr>
</tr>


<tr>
<tr>
   <td valign="top"><apll> +∘÷/⍣¯1  R</apll></td>
   <td valign="top"><apll>   +∘÷/⍣¯1  R</apll></td>
   <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>⎕PP</apll> terms<br />This function is best used on Multiple Precision numbers<br />
   <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>⎕PP</apll> terms<br />This function is best used on Multiple Precision numbers<br />
<div style="display: inline;"><apll>          +∘÷/⍣¯1  449<_r/>303<br />1 2 13 3 1 2<br />      +∘÷/+∘÷/⍣¯1  449<_r/>303<br />449<_r/>303<br />      +∘÷/⍣¯1 +∘÷/1 2 13 3 1 2<_x/><br />1 2 13 3 1 2</apll></div></td>
<div style="display: inline;"><apll>          +∘÷/⍣¯1  449<_r/>303<br />1 2 13 3 1 2<br />      +∘÷/+∘÷/⍣¯1  449<_r/>303<br />449<_r/>303<br />      +∘÷/⍣¯1 +∘÷/1 2 13 3 1 2<_x/><br />1 2 13 3 1 2</apll></div></td>
Line 131: Line 130:


<tr>
<tr>
   <td valign="top"><apll>L+∘÷/⍣¯1  R</apll></td>
   <td valign="top"><apll> L+∘÷/⍣¯1  R</apll></td>
   <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>L</apll> terms<br />This function is best used on Multiple Precision numbers<br />
   <td>Display the [https://en.wikipedia.org/wiki/Continued_fraction Continued Fraction] expansion of <apll>R</apll> to at most <apll>L</apll> terms<br />This function is best used on Multiple Precision numbers<br />
<div style="display: inline;"><apll>      20 +∘÷/⍣¯1  *1<_x/><br />2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1<br />      20 +∘÷/⍣¯1  ○1<_x/><br />3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2<br />        +∘÷\3 7 15 1<_x/>    ⍝ Convergents to Pi<br />3 22<_r/>7 333<_r/>106 355<_r/>113<br />      +∘÷/35 +∘÷/⍣¯1  ○1<_x/><br />3.141592653589793238462643383279502884197<br />      ○1<_x/><br />3.141592653589793238462643383279502884197<br />      20 +∘÷/⍣¯1 +∘÷/3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2<_x/><br />3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2</apll></div></td>
<div style="display: inline;"><apll>      20 +∘÷/⍣¯1  *1<_x/><br />2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1<br />      20 +∘÷/⍣¯1  ○1<_x/><br />3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2<br />        +∘÷\3 7 15 1<_x/>    ⍝ Convergents to Pi<br />3 22<_r/>7 333<_r/>106 355<_r/>113<br />      +∘÷/35 +∘÷/⍣¯1  ○1<_x/><br />3.141592653589793238462643383279502884197<br />      ○1<_x/><br />3.141592653589793238462643383279502884197<br />      20 +∘÷/⍣¯1 +∘÷/3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2<_x/><br />3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2</apll></div></td>

Revision as of 22:25, 20 December 2019

Z←{L} fg R successively applies the function f (or, if there is a Left argument, the function L∘f) to R until the expression Zn g Zn-1 returns a singleton 1. Zn and Zn-1 represent two consecutive applications of f (or L∘f) to R where Z0←R and Znf Zn-1 (or Zn←L∘f Zn-1).
Z←{L} fb R for non-negative integer scalar b, successively applies the function f (or, if there is a Left argument, the function L∘f) to R, b number of times;
for a negative integer scalar b, successively applies the inverse of the function f (or, if there is a Left argument, the inverse to the function L∘f), |b number of times
L and R are arbitrary arrays.
In the first case, Zn g Zn-1 must return a Boolean-valued singleton; otherwise a DOMAIN ERROR is signaled.
In the second case, b must be an integer scalar, otherwise a DOMAIN ERROR is signaled.


For example,

      sqrt←{{0.5×⍵+⍺÷⍵}⍣=⍨⍵} ⍝ Calculate square root using Newton's method
      sqrt 2
1.414213562373095
      fib←{⍵,+/¯2↑⍵} ⍝ Calculate a Fibonacci sequence
      fib⍣15 ⊢ 1 1
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597 
      pow←{⍵=0:,1 ⋄ ⍺+⍡×⍣(⍵-1) ⍺} ⍝ Raise a polynomial to a non-negative integer power
      1 ¯1 pow 5
1 ¯5 10 ¯10 5 ¯1
      phi←1+∘÷⍣=1 ⍝ Calculate the Golden Ratio
      phi
1.618033988749894

Inverses

When the right operand to the Power Operator is a negative integer scalar, the inverse of the function left operand is applied to the right argument. If f f⍣¯1 R ←→ R, then f⍣¯1 is a Right Identity Function, which all of the examples below satisfy. If it is also true that f⍣¯1 f R ←→ R, then f⍣¯1 is a Left Identity Function.

At the moment, only a few inverse functions are available as follows:

Function Meaning of Inverse Left/Right
Identity
Function
L⊥⍣¯1 R (N⍴L)⊤R for N sufficiently large to display all digits of R
10⊥⍣¯1 1234567890
1 2 3 4 5 6 7 8 9 0
10⊥10⊥⍣¯1 1234567890
1234567890
R only
⊥⍣¯1 R 2⊥⍣¯1 R
⊥⍣¯1 19
1 0 0 1 1
2⊥⊥⍣¯1 19
19
R only
L⊤⍣¯1 R L⊥R
10 10 10⊤⍣¯1 2 3 4
234
10 10 10⊤10 10 10⊤⍣¯1 2 3 4
2 3 4
10 10 10⊤⍣¯1 10 10 10⊤234
234
L and R
×/⍣¯1 R πR, that is, factor R into primes
×/⍣¯1 130
2 5 13
×/×/⍣¯1 130
130
×/⍣¯1 ×/2 5 13
2 5 13
L and R
π⍣¯1 R ×/R, that is, multiply together the prime factors in R
π⍣¯1 2 5 13
130
ππ⍣¯1 2 5 13
2 5 13
π⍣¯1 π130
130
L and R
+\[X]⍣¯1 R ¯2-\[X] R
+\⍣¯1 ⍳4
1 1 1 1
+\+\⍣¯1 ⍳4
1 2 3 4
+\⍣¯1+\⍳4
1 2 3 4
L and R
¯2-\[X]⍣¯1 R +\[X] R
¯2-\⍣¯1 4⍴1
1 2 3 4
¯2-\¯2-\⍣¯1 4⍴1
1 1 1 1
¯2-\⍣¯1 ¯2-\ 4⍴1
1 1 1 1
L and R
-\[X]⍣¯1 R (2-\[X] R)×[X](⍴R)[X]⍴¯1 1
a←?5⍴10
a
10 8 3 2 6
-\⍣¯1 a
10 2 ¯5 1 4
-\-\⍣¯1 a
10 8 3 2 6
-\⍣¯1-\a
10 8 3 2 6
L and R
÷\[X]⍣¯1 R (2÷\[X] R)*[X](⍴R)[X]⍴¯1 1
a←?5⍴10
a
10 8 3 2 6
÷\⍣¯1 a
10 1.25 0.375 1.5 3
÷\÷\⍣¯1 a
10 8 3 2 6
÷\⍣¯1÷\a
10 8 3 2 6
L and R
+∘÷/⍣¯1 R Display the Continued Fraction expansion of R to at most ⎕PP terms
This function is best used on Multiple Precision numbers
+∘÷/⍣¯1 449r303
1 2 13 3 1 2
+∘÷/+∘÷/⍣¯1 449r303
449r303
+∘÷/⍣¯1 +∘÷/1 2 13 3 1 2x
1 2 13 3 1 2
L and R
L+∘÷/⍣¯1 R Display the Continued Fraction expansion of R to at most L terms
This function is best used on Multiple Precision numbers
20 +∘÷/⍣¯1 *1x
2 1 2 1 1 4 1 1 6 1 1 8 1 1 10 1 1 12 1 1
20 +∘÷/⍣¯1 ○1x
3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2
+∘÷\3 7 15 1x ⍝ Convergents to Pi
3 22r7 333r106 355r113
+∘÷/35 +∘÷/⍣¯1 ○1x
3.141592653589793238462643383279502884197
○1x
3.141592653589793238462643383279502884197
20 +∘÷/⍣¯1 +∘÷/3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2x
3 7 15 1 292 1 1 1 2 1 3 1 14 2 1 1 2 2 2 2
L and R