Language Features: Difference between revisions

From NARS2000
Jump to navigationJump to search
No edit summary
Line 2: Line 2:


==Syntax==
==Syntax==
* [[Strand Assignment]]:  <apll>(A<sub>1</sub> A<sub>2</sub> ... A<sub>n</sub>)←R</apll>
* [[Strand Assignment]]:  (A1 A2 ... An)←R
* [[Modify Assignment]]:  <apll>A<i>f</i>←R</apll>
* [[Modify Assignment]]:  Af←R
* [[Modify Strand Assignment]]:  <apll>(A<sub>1</sub> A<sub>2</sub> ... A<sub>n</sub>)<i>f</i>←R</apll>
* [[Modify Strand Assignment]]:  (A1 A2 ... An)f←R
* [[Function/Operator/Hyperator Assignment]]:  <apll>A←<i>f</i></apll>, &nbsp;&nbsp;<apll>A←<i>op1</i></apll>, &nbsp;&nbsp;<apll>A←<i>op2</i></apll>
* [[Function/Operator/Hyperator Assignment]]:  A←f,   A←op1,   A←op2
<!-- * [[Selective Assignment]]:  e.g., <apll>(1 1⍉M)←0</apll> -->
* [[Binding Strength]]:  How Variables, Functions, Operators, and Hyperators combine
* [[Sink]]:  <apll>←R</apll>
* [[Sink]]:  ←R
* [[Point Notation]]:   
* [[Point Notation]]:   
** '''Base''' &mdash; <apll>16<bn/>10FFFF</apll> is a shorthand for <apll>16⊥1 0 15 15 15 15</apll> and <apll>10<bn/>45v</apll> is a shorthand for <apll>10⊥4 5 31</apll>
** '''Base''' 1610FFFF is a shorthand for 16⊥1 0 15 15 15 15 and 1045v is a shorthand for 10⊥4 5 31
** '''Euler''' &mdash; <apll>2<x/>3</apll> is a shorthand for <apll>2e<sup>3</sup></apll> or <apll>2×(*1)*3</apll> where <apll>e</apll> is [https://en.wikipedia.org/wiki/E_(mathematical_constant) Euler's Number] (2.718281828459045...)
** '''Euler''' — 23 is a shorthand for 2e3 or 2×(*1)*3 where e is [https://en.wikipedia.org/wiki/E_(mathematical_constant) Euler's Number] (2.718281828459045...)
** '''Pi''' &mdash; <apll>2<pn/>3</apll> is a shorthand for <apll>2&pi;<sup>3</sup></apll> or <apll>2×(○1)*3</apll> where <apll>&pi;</apll> is [https://en.wikipedia.org/wiki/Pi Archimedes' constant] (3.141592653589793...)
** '''Pi''' 23 is a shorthand for 2π3 or 2×(○1)*3 where π is [https://en.wikipedia.org/wiki/Pi Archimedes' constant] (3.141592653589793...)
** '''Gamma''' &mdash; <apll>2<g/>3</apll> is a shorthand for <apll>2&gamma;<sup>3</sup></apll> where <apll>&gamma;</apll> is [https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant Euler-Mascheroni's Constant] (0.5772156649015329...)
** '''Gamma''' — 23 is a shorthand for 2γ3 where γ is [https://en.wikipedia.org/wiki/Euler%E2%80%93Mascheroni_constant Euler-Mascheroni's Constant] (0.5772156649015329...)
** '''Hypercomplex''' &mdash; <apll>2<J/>3</apll>, <apll>2<in/>3</apll> (both equal to <apll>2+3×√¯1</apll>), <apll>2<ad/>3</apll> (Angle in Degrees), <apll>2<ar/>3</apll> (Angle in Radians), or <apll>2<au/>3</apll> (Angle in Unit Normalized) for a Complex number, <apll>1<in/>2<j/>3<k/>4</apll> for a Quaternion number, and <apll>1<in/>2<j/>3<k/>4<l/>5<ij/>6<jk/>7<kl/>8</apll> for an Octonion number.
** '''Hypercomplex''' — 23, 23 (both equal to 2+3×√¯1), 23 (Angle in Degrees), 23 (Angle in Radians), or 23 (Angle in Unit Normalized) for a Complex number, 1234 for a Quaternion number, and 12345678 for an Octonion number.
** '''Rational''' &mdash; <apll>2<r/>3</apll> is a shorthand for <apll>2÷3</apll> as a Multiple-Precision Integer/Rational number.
** '''Rational''' — 23 is a shorthand for 2÷3 as a Multiple-Precision Integer/Rational number.
** '''Variable-Precision Floating''' &mdash; <apll>2.3<v/></apll> is a shorthand for <apll>2.3</apll> as a Multiple-Precision Floating Point number.
** '''Variable-Precision Floating''' 2.3 is a shorthand for 2.3 as a Multiple-Precision Floating Point number.
** '''Ball Arithmetic''' &mdash; <apll>2.3<pom/>1<E/>¯17</apll> is a shorthand for a Ball whose Midpoint and Radius are <apll>2.3</apll> and <apll>1<E/>¯17</apll>, respectively.
** '''Ball Arithmetic''' 2.31¯17 is a shorthand for a Ball whose Midpoint and Radius are 2.3 and 1¯17, respectively.
* [[Trains]]:  e.g., <apll>avg←(+⌿ ÷ ≢)</apll> applies the functions to its argument(s) in a particular way (in this case, to compute the average of a numeric scalar or vector).
* [[Trains]]:  e.g., avg←(+⌿ ÷ ≢) applies the functions to its argument(s) in a particular way (in this case, to compute the average of a numeric scalar or vector).
* [[Anonymous Functions/Operators/Hyperators]]:  multi-line grouping of one or more statements all enclosed in braces such as <apll>{(+⌿⍵)÷≢⍵}</apll>.
* [[Anonymous Functions/Operators/Hyperators]]:  multi-line grouping of one or more statements all enclosed in braces such as {(+⌿⍵)÷≢⍵}.


==Primitive functions==
==Primitive functions==


{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|<big>'''Name'''</big>|| &nbsp;&nbsp;&nbsp; <big>'''Symbol/Syntax'''</big>||<big>'''Function Valence'''</big>
|'''Name'''||     '''Symbol/Syntax'''||'''Function Valence'''
|-
|-
|[[Array Lookup]]|| &nbsp;&nbsp;&nbsp; <apll>L⍸R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Array Lookup]]||     L⍸R   ||dyadic
|-
|-
|[[Condense]]|| &nbsp;&nbsp;&nbsp; <apll>&lt;[X] R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Condense]]||     <[X] R   ||monadic
|-
|-
|[[Dilate]]|| &nbsp;&nbsp;&nbsp; <apll>&gt;[X] R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Dilate]]||     >[X] R   ||monadic
|-
|-
|[[Expand]]|| &nbsp;&nbsp;&nbsp; <apll>L\[X] R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Expand]]||     L\[X] R   ||dyadic
|-
|-
|[[Find]]|| &nbsp;&nbsp;&nbsp; <apll>L⍷R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Find]]||     L⍷R   ||dyadic
|-
|-
|[[Index Generator]]|| &nbsp;&nbsp;&nbsp; <apll>⍳R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Index Generator]]||     ⍳R   ||monadic
|-
|-
|[[Index Of]]|| &nbsp;&nbsp;&nbsp; <apll>L⍳R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Index Of]]||     L⍳R   ||dyadic
|-
|-
|[[Indexing]]|| &nbsp;&nbsp;&nbsp; <apll>R[L]</apll>, &nbsp;&nbsp; <apll>R[L]←A</apll>, &nbsp;&nbsp; <apll>R[L]<i>f</i>←A</apll>, &nbsp;&nbsp; <apll>L⌷[X] R</apll>, &nbsp;&nbsp; <apll>L⍉R</apll>, &nbsp;&nbsp; <apll>L⊃R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Indexing]]||     R[L],   R[L]←A,   R[L]f←A,   L⌷[X] R,   L⍉R,   L⊃R   ||dyadic
|-
|-
|[[Indices]]|| &nbsp;&nbsp;&nbsp; <apll>⍸R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Indices]]||     ⍸R   ||monadic
|-
|-
|[[Matrix Inverse/Divide]]|| &nbsp;&nbsp;&nbsp; <apll>⌹R</apll>, &nbsp;&nbsp; <apll>L⌹R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Matrix Inverse/Divide]]||     ⌹R,   L⌹R   ||ambivalent
|-
|-
|[[Mismatch]]|| &nbsp;&nbsp;&nbsp; <apll>L≢R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Mismatch]]||     L≢R   ||dyadic
|-
|-
|[[Partitioned Enclose]]|| &nbsp;&nbsp;&nbsp; <apll>L⊂[X] R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Partitioned Enclose]]||     L⊂[X] R   ||dyadic
|-
|-
|[[Primes]]|| &nbsp;&nbsp;&nbsp; <apll>πR</apll>, &nbsp;&nbsp; <apll>LπR</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Primes]]||     πR,   LπR   ||ambivalent
|-
|-
|[[Reshape]]|| &nbsp;&nbsp;&nbsp; <apll>L⍴R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Reshape]]||     L⍴R   ||dyadic
|-
|-
|[[Root]]|| &nbsp;&nbsp;&nbsp; <apll>√R</apll>, &nbsp;&nbsp; <apll>L√[X] R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Root]]||     √R,   L√[X] R   ||ambivalent
|-
|-
|[[Sequence]]|| &nbsp;&nbsp;&nbsp; <apll>L..R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Sequence]]||     L..R   ||dyadic
|-
|-
|[[Sets]]|| &nbsp;&nbsp;&nbsp; <apll>L§R</apll>, &nbsp;&nbsp; <apll>L⊆R</apll>, &nbsp;&nbsp; <apll>L⊇R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Sets]]||     L§R,   L⊆R,   L⊇R   ||dyadic
|-
|-
|[[Tally]]|| &nbsp;&nbsp;&nbsp; <apll>≢R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Tally]]||     ≢R   ||monadic
|-
|-
|[[Without]]|| &nbsp;&nbsp;&nbsp; <apll>L~R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Without]]||     L~R   ||dyadic
|}
|}


where <apll>L</apll> is the Left argument, <apll>R</apll> is the Right argument, and <apll>[X]</apll> is an optional Axis value.
where L is the Left argument, R is the Right argument, and [X] is an optional Axis value.


==Primitive operators==
==Primitive operators==


{| border="0" cellpadding="0" cellspacing="0"
{| border="0" cellpadding="0" cellspacing="0"
|<big>'''Name'''</big>|| &nbsp;&nbsp;&nbsp; <big>'''Symbol/Syntax'''</big>||<big>'''Derived Function Valence'''</big>
|'''Name'''||     '''Symbol/Syntax'''||'''Derived Function Valence'''
|-
|-
|[[Axis]]|| &nbsp;&nbsp;&nbsp; <apll>{L} <i>f</i>[<i>X</i>] R</apll>, &nbsp;&nbsp; <apll>{L} (<i>f op1</i>[<i>X</i>]) R</apll>, &nbsp;&nbsp; <apll>{L} (<i>f op2</i>[<i>X</i>] <i>g</i>) R</apll> &nbsp;&nbsp;&nbsp; ||ambivalent
|[[Axis]]||     {L} f[X] R,   {L} (f op1[X]) R,   {L} (f op2[X] g) R     ||ambivalent
|-
|-
|[[Combinatorial]]|| &nbsp;&nbsp;&nbsp; <apll><i>a</i>‼ R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Combinatorial]]||     a‼ R   ||monadic
|-
|-
|[[Commute-Duplicate|Commute]]|| &nbsp;&nbsp;&nbsp; <apll>L <i>f</i>⍨ R ←→ R <i>f</i> L</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Commute-Duplicate|Commute]]||     L f⍨ R ←→ R f L   ||dyadic
|-
|-
|[[Composition]]|| &nbsp;&nbsp;&nbsp; <apll>{L} <i>f</i>⍥<i>g</i> R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Composition]]||     {L} f⍥g R   ||ambivalent
|-
|-
|[[Compose]]|| &nbsp;&nbsp;&nbsp; <apll>{L} <i>f</i>∘<i>g</i> R</apll>, &nbsp;&nbsp; <apll>(<i>f</i>∘<i>b</i>) R</apll>, &nbsp;&nbsp; <apll><i>a</i>∘<i>g</i> R</apll> &nbsp;&nbsp;&nbsp;||ambivalent/monadic
|[[Compose]]||     {L} f∘g R,   (f∘b) R,   a∘g R   ||ambivalent/monadic
|-
|-
|[[Convolution]]|| &nbsp;&nbsp;&nbsp; <apll>L <i>f</i>⍡<i>g</i> R</apll> &nbsp;&nbsp;&nbsp;||dyadic
|[[Convolution]]||     L f⍡g R   ||dyadic
|-
|-
|[[Determinant Operator|Determinant]]|| &nbsp;&nbsp;&nbsp; <apll><i>f</i>.<i>g</i> R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Determinant Operator|Determinant]]||     f.g R   ||monadic
|-
|-
|[[Commute-Duplicate|Duplicate]]|| &nbsp;&nbsp;&nbsp; <apll><i>f</i>⍨ R ←→ R <i>f</i> R</apll> &nbsp;&nbsp;&nbsp;||monadic
|[[Commute-Duplicate|Duplicate]]||     f⍨ R ←→ R f R   ||monadic
|-
|-
|[[Matrix]]|| &nbsp;&nbsp;&nbsp; <apll>{L} <i>f</i>⌻ R</apll>, &nbsp;&nbsp; <apll>∘⌻ R</apll> &nbsp;&nbsp;&nbsp;||ambivalent/monadic
|[[Matrix]]||     {L} f⌻ R,   ∘⌻ R   ||ambivalent/monadic
|-
|-
|[[Multisets]]|| &nbsp;&nbsp;&nbsp; <apll>{L} <i>f</i>⍦ R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Multisets]]||     {L} f⍦ R   ||ambivalent
|-
|-
|[[Null]]|| &nbsp;&nbsp;&nbsp; <apll>{L} <i>f</i>⊙ R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Null]]||     {L} f⊙ R   ||ambivalent
|-
|-
|[[Power]]|| &nbsp;&nbsp;&nbsp; <apll>{L} <i>f</i/>⍣<i>g</i> R</apll>, &nbsp;&nbsp;  <apll>{L} (<i>f</i/>⍣<i>b</i>) R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Power]]||     {L} f⍣g R,     {L} (f⍣b) R   ||ambivalent
|-
|-
|[[Rank]]|| &nbsp;&nbsp;&nbsp; <apll>{L} (<i>f</i>⍤[<i>X</i>] <i>b</i>) R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Rank]]||     {L} (f⍤[X] b) R   ||ambivalent
|-
|-
|[[Variant]]|| &nbsp;&nbsp;&nbsp; <apll>{L} (<i>f</i>⍠<i>b</i>) R</apll> &nbsp;&nbsp;&nbsp;||ambivalent
|[[Variant]]||     {L} (f⍠b) R   ||ambivalent
|}
|}


where <apll>{L}</apll> is an optional Left argument, <apll>R</apll> is the Right argument, <apll><i>f</i></apll> and <apll><i>g</i></apll> represent Functions, <apll><i>a</i></apll> and <apll><i>b</i></apll> represent Variables, and <apll>[<i>X</i>]</apll> is an optional Axis value.
where {L} is an optional Left argument, R is the Right argument, f and g represent Functions, a and b represent Variables, and [X] is an optional Axis value.


==Datatypes==
==Datatypes==
* [[Infinity]]:  <apll></apll> and <apll>¯∞</apll>
* [[Infinity]]:  ∞ and ¯∞
* [[APA|Arithmetic Progression Arrays]]:  <apll>2 3 4⍴⍳24</apll>
* [[APA|Arithmetic Progression Arrays]]:  2 3 4⍴⍳24
* [[Unicode|Unicode Characters]]
* [[Unicode|Unicode Characters]]
* [[Array Predicates]]
* [[Array Predicates]]
* [[Rational and VFP Numbers|Rational Numbers]]:  <apll>1<r/>3</apll> and <apll>12345<x/></apll>
* [[Rational and VFP Numbers|Rational Numbers]]:  13 and 12345
* [[Rational and VFP Numbers|Variable-precision Floating Point (VFP) Numbers]]:  <apll>1.234<v/></apll> and <apll>12<v/></apll>
* [[Rational and VFP Numbers|Variable-precision Floating Point (VFP) Numbers]]:  1.234 and 12
* [[Hypercomplex Numbers|Complex Numbers]]:  <apll>1<J/>2</apll> or <apll>3.4<in/>5</apll> or <apll>2<ad/>90</apll> or <apll>2<ar/>2.1</apll> or <apll>2<au/>0.5</apll>
* [[Hypercomplex Numbers|Complex Numbers]]:  12 or 3.45 or 290 or 22.1 or 20.5
* [[Hypercomplex Numbers|Quaternion Numbers]]:  <apll>1<in/>2<j/>3<k/>4</apll>
* [[Hypercomplex Numbers|Quaternion Numbers]]:  1234
* [[Hypercomplex Numbers|Octonion Numbers]]:  <apll>1<in/>2<j/>3<k/>4<l/>5<ij/>6<jk/>7<kl/>8</apll>
* [[Hypercomplex Numbers|Octonion Numbers]]:  12345678
* [[Ball Arithmetic]]:  <apll>2.3<pom/></apll> is a shorthand for a Ball whose Midpoint and Radius are <apll>2.3</apll> and <apll>2*¯53</apll>, respectively, because the Midpoint (<apll>2.3</apll>) cannot be represented exactly in double-precision floating point format with the standard <apll>53</apll> bits of precision.
* [[Ball Arithmetic]]:  2.3 is a shorthand for a Ball whose Midpoint and Radius are 2.3 and 2*¯53, respectively, because the Midpoint (2.3) cannot be represented exactly in double-precision floating point format with the standard 53 bits of precision.


==System Commands==
==System Commands==

Revision as of 21:29, 19 March 2019

At the moment, the following sections describe only those language features that are New or Enhanced relative to the Extended APL Standard, or that deserve special comment.

Syntax

  • Strand Assignment: (A1 A2 ... An)←R
  • Modify Assignment: Af←R
  • Modify Strand Assignment: (A1 A2 ... An)f←R
  • Function/Operator/Hyperator Assignment: A←f, A←op1, A←op2
  • Binding Strength: How Variables, Functions, Operators, and Hyperators combine
  • Sink: ←R
  • Point Notation:
    • Base — 1610FFFF is a shorthand for 16⊥1 0 15 15 15 15 and 1045v is a shorthand for 10⊥4 5 31
    • Euler — 23 is a shorthand for 2e3 or 2×(*1)*3 where e is Euler's Number (2.718281828459045...)
    • Pi — 23 is a shorthand for 2π3 or 2×(○1)*3 where π is Archimedes' constant (3.141592653589793...)
    • Gamma — 23 is a shorthand for 2γ3 where γ is Euler-Mascheroni's Constant (0.5772156649015329...)
    • Hypercomplex — 23, 23 (both equal to 2+3×√¯1), 23 (Angle in Degrees), 23 (Angle in Radians), or 23 (Angle in Unit Normalized) for a Complex number, 1234 for a Quaternion number, and 12345678 for an Octonion number.
    • Rational — 23 is a shorthand for 2÷3 as a Multiple-Precision Integer/Rational number.
    • Variable-Precision Floating — 2.3 is a shorthand for 2.3 as a Multiple-Precision Floating Point number.
    • Ball Arithmetic — 2.31¯17 is a shorthand for a Ball whose Midpoint and Radius are 2.3 and 1¯17, respectively.
  • Trains: e.g., avg←(+⌿ ÷ ≢) applies the functions to its argument(s) in a particular way (in this case, to compute the average of a numeric scalar or vector).
  • Anonymous Functions/Operators/Hyperators: multi-line grouping of one or more statements all enclosed in braces such as {(+⌿⍵)÷≢⍵}.

Primitive functions

Name Symbol/Syntax Function Valence
Array Lookup L⍸R dyadic
Condense <[X] R monadic
Dilate >[X] R monadic
Expand L\[X] R dyadic
Find L⍷R dyadic
Index Generator ⍳R monadic
Index Of L⍳R dyadic
Indexing R[L], R[L]←A, R[L]f←A, L⌷[X] R, L⍉R, L⊃R dyadic
Indices ⍸R monadic
Matrix Inverse/Divide ⌹R, L⌹R ambivalent
Mismatch L≢R dyadic
Partitioned Enclose L⊂[X] R dyadic
Primes πR, LπR ambivalent
Reshape L⍴R dyadic
Root √R, L√[X] R ambivalent
Sequence L..R dyadic
Sets L§R, L⊆R, L⊇R dyadic
Tally ≢R monadic
Without L~R dyadic

where L is the Left argument, R is the Right argument, and [X] is an optional Axis value.

Primitive operators

Name Symbol/Syntax Derived Function Valence
Axis {L} f[X] R, {L} (f op1[X]) R, {L} (f op2[X] g) R ambivalent
Combinatorial a‼ R monadic
Commute L f⍨ R ←→ R f L dyadic
Composition {L} f⍥g R ambivalent
Compose {L} f∘g R, (f∘b) R, a∘g R ambivalent/monadic
Convolution L f⍡g R dyadic
Determinant f.g R monadic
Duplicate f⍨ R ←→ R f R monadic
Matrix {L} f⌻ R, ∘⌻ R ambivalent/monadic
Multisets {L} f⍦ R ambivalent
Null {L} f⊙ R ambivalent
Power {L} f⍣g R, {L} (f⍣b) R ambivalent
Rank {L} (f⍤[X] b) R ambivalent
Variant {L} (f⍠b) R ambivalent

where {L} is an optional Left argument, R is the Right argument, f and g represent Functions, a and b represent Variables, and [X] is an optional Axis value.

Datatypes

System Commands

System Commands provide features to the user of the APL system, separate from actual workspaces, variables or APL operators. These provide such features as accessing files, saving a workspace, and exiting the APL interpreter. The commands are not case sensitive, so )IN and )in do the same thing.

NARS2000 currently has the following system commands:

)BOX Turn ON/OFF box around output
)CLEAR Start a new session manager window with an empty workspace
)CLOSE
)COPY
)DROP
)EDIT Create a new function in the workspace or edit an existing function
)ERASE Delete a variable or function in the current workspace
)EXIT Close down the interpreter and exit the program. Same as )OFF
)FNS
)FOP Display functions, operators, and hyperators. Same as )FOPS
)FOPS
)HYP Display hyperators only
)IN
)INASCII    
)LIB
)LAOD Alternative spelling of )LOAD
)LOAD Load an existing workspace
)NEWTAB
)NMS
)OFF Close down the interpreter and exit the program. Same as )EXIT
)OPEN
)OPS Display operators only
)OUT
)RESET
)SAVE Save the current workspace
)SVAE Alternative spelling for )SAVE
)SI workspace State Indicator
)SIC State Indicator Clear
)SINL
)SYMB
)ULIB
)VARS
)XLOAD
)WSID
 

System Variables and Functions

System Variables (A value may be assigned to these except for ⎕DM)
ALX CT DM DT ELX FC FEATURE FPC IC IO
LR LX PP PR PW RL SA WSID
Niladic System Functions (a value cannot be assigned to these)
A AV EM ET LC NNAMES NNUMS SI SYSID SYSVER
T TC TCBEL TCBS TCESC TCFF TCHT TCLF TCNL TCNUL
TS WA
Monadic or dyadic system functions (a value cannot be assigned to these)
AT CR DC DFT DL DR EA EC ERROR ES
EX FMT FX MF NAPPEND NC NCREATE NERASE NINFO NL
NLOCK NREAD NRENAME NREPLACE NRESIZE NSIZE NTIE NUNTIE STOP TF
TRACE UCS VR
Note that quad functions and variables (except for the ⎕A family of functions) are case insensitive